328
F. Tanaka et al. / Tetrahedron Letters 45 (2004) 325–328
1979, 568, 297; Guidinger, P. F.; Nowak, T. Biochemistry
1991, 30, 8851.
7. Model systems for activity change of amino group in
hydrophobic environment: Liu, L.; Rozenman, M.; Bre-
slow, R. J. Am. Chem. Soc. 2002, 124, 12660.
3. (a) Wagner, J.; Lerner, R. A.; Barbas, C. F., III. Science
1995, 270, 1797; (b) Barbas, C. F., III; Heine, A.; Zhong,
G.; Hoffmann, T.; Gramatikova, S.; Bjornestsdt, R.; List,
B.; Anderson, J.; Stura, E. A.; Wilson, I. A.; Lerner, R. A.
Science 1997, 278, 2085; (c) Hoffmann, T.; Zhong, G.; List,
B.; Shabat, D.; Anderson, J.; Gramatikova, S.; Lerner, R.
A.; Barbas, C. F., III. J. Am. Chem. Soc. 1998, 120, 2768;
(d) Zhong, G.; Lerner, R. A.; Barbas, C. F., III. Angew.
Chem., Int. Ed. 1999, 38, 3738; (e) Karlstrom, A.; Zhong,
G.; Rader, C.; Larsen, N. A.; Heine, A.; Fuller, R.; List,
B.; Tanaka, F.; Wilson, I. A.; Barbas, C. F., III, Lerner, R.
A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 3878; (f)
Tanaka, F.; Lerner, R. A.; Barbas, C. F., III. J. Am.
Chem. Soc. 2000, 122, 4835; (g) Shulman, H.; Makarov,
C.; Ogawa, A. K.; Romesberg, F.; Keinan, E. J. Am.
Chem. Soc. 2000, 122, 10743; (h) Johnsson, K.; Allemann,
R. K.; Widmer, H.; Benner, S. A. Nature 1993, 365, 530;
(i) Perez-Paya, E.; Houghton, R. A.; Blondelle, S. E. J.
Biol. Chem. 1996, 271, 4120; (j) Taylor, S. E.; Rutherford,
T. J.; Allemann, R. K. Bioorg. Med. Chem. Lett. 2001, 11,
2631; (k) Tanaka, F.; Barbas, C. F., III. Chem. Commun.
2001, 769; (l) Tanaka, F.; Barbas, C. F., III. J. Am. Chem.
Soc. 2002, 124, 3510.
8. (a) Pollack, R. M.; Ritterstein, S. J. Am. Chem. Soc. 1972,
94, 5064; (b) Bernasconi, C.; Ohlberg, D. A.; Stronach, M.
W. J. Org. Chem. 1991, 56, 3016; (c) Reymond, J.-L.;
Chen, Y. J. Am. Chem. Soc. 1995, 60, 6970.
9. Tanaka, F.; Thayumanavan, R.; Barbas, C. F., III. J. Am.
Chem. Soc. 2003, 125, 8523.
10. Hine, J.; Via, F. A. J. Am. Chem. Soc. 1972, 94, 190; Stefani,
H. A.; Costa, I. M.; Silva, D. O. Synthesis 2000, 1526.
11. Bahmanyar, S.; Houk, K. N. J. Am. Chem. Soc. 2001, 123,
11273.
12. The mixtures in DMF (90% and 98%), in 2-PrOH (40%,
60%, and 80%), in CH3CN (90% and 98%) were not
homogeneous.
13. This glycine-catalyzed aldol reaction is slower than the
proline-catalyzed reaction under the same conditions. See
also Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III.
J. Am. Chem. Soc. 2001, 123, 5260.
14. Kamlet–Taft b, hydrogen-bond acceptor basicity values
are as follows: H2O 0.47, DMSO 0.76, DMF 0.69, 2-PrOH
0.84, MeOH 0.66, CH3CN 0.40. Reichardt, C. Solvents
and Solvent Effects in Organic Chemistry; 3rd ed. Wiley-
VCH: Weinleim, 2003; p 433.
4. CRC Handbook of Chemistry and Physics; 83rd ed.; Lide,
D. R., Ed.; CRC: New York, 2002; pp 1–7.
5. (a) Westheimer, F. H. Tetrahedron 1995, 51, 3; (b)
Highbarger, L. A.; Gerlt, J. A.; Kenyon, G. L. Biochem-
istry 1996, 35, 41; (c) Blom, N.; Sygusch, J. Nat. Struct.
Biol. 1997, 4, 36.
6. Dao-pin, S.; Anderson, D. E.; Baase, W. A.; Dahl-
quist, F. W.; Matthews, B. W. Biochemistry 1991, 30,
11521.
15. Dielectric constants are following: H2O 80.1, DMSO 47.2,
DMF 38.3, 2-PrOH 20.2, MeOH 33.0, CH3CN 36.6. 83rd
Ed. CRC Handbook of Chemistry and Physics; Lide, D. R.,
Ed.; CRC: New York, 2002; pp 8–127.
16. Dimroth–Reichart E(T)N solvent polarity values are as
follows: H2O 1.00, DMSO 0.444, DMF 0.386, 2-PrOH
0.546, MeOH 0.762, CH3CN 0.460. Reichardt, C. Solvents
and Solvent Effects in Organic Chemistry, 3rd ed. Wiley-
VCH: Weinleim, 2003; p 418, 471.