G Model
CCLET 3907 1–6
6
Q.-S. Fang et al. / Chinese Chemical Letters xxx (2016) xxx–xxx
259
260
261
262
263
compounds were also deposited in Supporting information. The
crystallographic data of anthraceneꢀ1 and pyreneꢀ1 (CCDC
1508889 and 1508890, respectively) can be obtained in Supporting
information and free of charge from the Cambridge Crystallo-
[5] (a) H.Y. Gong, B.M. Rambo, E. Karnas, et al., Environmentally responsive
threading, dethreading, and fixation of anion-induced pseudorotaxanes, J. Am.
Chem. Soc. 133 (2011) 1526–1533;
306
307
308
309
310
311
312
313
(b) H. Zhou, Z. Wang, C. Gao, J. You, G. Gao, Synthesis and characterization of a
luminescent and fully rigid tetrakisimidazolium macrocycle, Chem. Commun.
49 (2013) 1832–1834;
(c) J.J. Henkelis, A.K. Blackburn, E.J. Dale, et al., Allosteric modulation of
substrate binding within a tetracationic molecular receptor, J. Am. Chem. Soc.
137 (2015) 13252–13255.
264
Acknowledgments
[6] H. Bakkali, C. Marie, A. Ly, et al., Functionalized 2,5-dipyridinylpyrroles by
electrochemical reduction of 3,6-dipyridinylpyridazine precursors, Eur. J. Org.
Chem. 12 (2008) 2156–2166.
[7] (a) F.G. Gatti, D.A. Leigh, S.A. Nepogodiev, et al., Stiff, and sticky in the right
places: the dramatic influence of preorganizing guest binding sites on the
hydrogen bond-directed assembly of rotaxanes, J. Am. Chem. Soc. 123 (2001)
5983–5989;
314
315
265 Q6
266
We gratefully acknowledge the financial support of NNSF of
China (Nos. 21402069 and 21361011) and the Project of Jiangxi
Provincial Education Department (No. GJJ14264).
316
317
318
319
320
321
322
323
324
267
268
Appendix A. Supplementary data
(b) V. Aucagne, K.D. Hänni, D.A. Leigh, P.J. Lusby, D.B. Walker, Catalytic “click”
rotaxanes: a substoichiometric metal-template pathway to mechanically
interlocked architectures, J. Am. Chem. Soc. 128 (2006) 2186–2187;
(c) C. Ke, R.A. Smaldone, T. Kikuchi, et al., Quantitative emergence of hetero[4]
rotaxanes by template-directed click chemistry, Angew. Chem. Int. Ed. 52
(2013) 381–387.
269
270
Supplementary data associated with this article can be found, in
[8] D.M. Bailey, A. Hennig, V.D. Uzunova, W.M. Nau, Supramolecular tandem
enzyme assays for multiparameter sensor arrays and enantiomeric excess
determination of amino acids, Chem. Eur. J. 14 (2008) 6069–6077.
[9] (a) D.J. Hoffart, J. Tiburcio, A. de La Torre, L.K. Knight, S.J. Loeb, Cooperative ion-
ion interactions in the formation of interpenetrated molecules, Angew. Chem.
Int. Ed. 47 (2008) 97–101;
271
325
326
References
[1] (a) Z.J. Zhang, H.Y. Zhang, H. Wang, Y. Liu, A twin-axial hetero[7]rotaxane,
Angew. Chem. Int. Ed. 50 (2011) 10834–10838;
272
273
274
275
276
277
278
279
280
281
282
327
328
329
330
331
332
333
334
335
336
337
(b) V.N. Vukotic, K.J. Harris, K. Zhu, R.W. Schurko, S.J. Loeb, Metal-organic
frameworks with dynamic interlocked components, Nat. Chem. 4 (2012) 456–
460;
(c) D.A. Leigh, V. Marcos, M.R. Wilson, Rotaxane catalysts, ACS Catal. 4 (2014)
4490–4497;
(d) Z. Meng, Y. Han, L.N. Wang, et al., Stepwise motion in a multivalent [2](3)
catenane, J. Am. Chem. Soc. 137 (2015) 9739–9745;
(e) Y. Wang, G. Ping, C. Li, Efficient complexation between pillar[5]arenes and
neutral guests: from host–guest chemistry to functional materials, Chem.
Commun. 52 (2016) 9858–9872.
(b) H. Chen, J. Fan, X. Hu, et al., Biphen[n]arenes, Chem. Sci. 6 (2015) 197–202;
(c) Y.M. Zhang, Z. Wang, L. Chen, H.B. Song, Y. Liu, Thermodynamics and
structures of complexation between tetrasulfonated 1,5-dinaphtho-38-
crown-10 and diquaternary salts in aqueous solution, J. Phys. Chem. B 118
(2014) 2433–2441;
(d) H. Li, D.X. Chen, Y.L. Sun, et al., Viologen-mediated assembly of and sensing
with carboxylatopillar[5]arene-modified gold nanoparticles, J. Am. Chem. Soc.
135 (2013) 1570–1576;
(e) J. Ma, Q. Meng, X. Hu, et al., Synthesis of a water-soluble carboxylatobiphen
[4]arene and its selective complexation toward acetylcholine, Org. Lett. 18
(2016) 5740–5743.
[2] M. Xue, Y. Yang, X. Chi, X. Yan, F. Huang, Development of pseudorotaxanes and
rotaxanes: from synthesis to stimuli-responsive motions to applications,
Chem. Rev. 115 (2015) 7398–7501.
[3] (a) B. Odell, M.V. Reddington, A.M.Z. Slawin, et al., Cyclobis(paraquat-p-
phenylene): a tetracationic multipurpose receptor, Angew. Chem. Int. Ed. 27
(1988) 1547–1550;
283
284
338
339
ꢀ
[10] O.Š. Miljanic, J.F. Stoddart, Dynamic donor–acceptor [2]catenanes, Proc. Natl.
Acad. Sci. U. S. A. 104 (2007) 12966–12970.
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
[11] B.M. Rambo, H.Y. Gong, M. Oh, J.L. Sessler, The “texas-sized” molecular box: a
versatile building block for the construction of anion-directed mechanically
interlocked structures, Acc. Chem. Res. 45 (2012) 1390–1401.
[12] (a) C. Zhang, S. Li, J. Zhang, et al., Benzo-21-crown-7/secondary
dialkylammonium salt [2]pseudorotaxane and [2]rotaxane-type threaded
structures, Org. Lett. 9 (2007) 5553–5556;
340
341
(b) M. Liu, S. Li, M. Zhang, et al., Three-dimensional bis(m-phenylene)-32-
crown-10-based cryptand/paraquat catenanes, Org. Biomol. Chem. 7 (2009)
1288–1291;
(c) H.Y. Gon, B.M. Rambo, E. Karnas, V.M. Lynch, J.L. Sessler, A ‘texas-sized’
molecular box that forms an anion-induced supramolecular necklace, Nat.
Chem. 2 (2010) 406–409;
(d) J. Cao, H.Y. Lu, J.F. Xiang, C.F. Chen, Complexation between pentiptycene-
based mono(crown ether)s and tetracationic cyclobis(paraquat-p-phenylene):
who is the host or the guest? Chem. Commun. 46 (2010) 3586–3588;
(e) K.D. Zhang, X. Zhao, G.T. Wang, et al., Foldamer-tuned switching kinetics
and metastability of [2]rotaxanes, Angew. Chem. Int. Ed. 50 (2011)
9866–9870;
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
(b) W. Jiang, H.D.F. Winkler, C.A. Schalley, Integrative self-sorting: construction
of a cascade-stoppered hetero [3]rotaxane, J. Am. Chem. Soc. 130 (2008)
13852–13853;
(c) Q. Jiang, H.Y. Zhang, M. Han, Z.J. Ding, Y. Liu, pH-controlled intramolecular
charge-transfer behavior in bistable [3]rotaxane, Org. Lett. 12 (2010) 1728–
1731;
(d) D.H. Qu, H. Tian, Novel and efficient templates for assembly of rotaxanes
and catenanes, Chem. Sci. 2 (2011) 1011–1015;
ꢀ
(f) J.C. Barnes, M. Jurícek, N.L. Strutt, et al., ExBox: a polycyclic aromatic
(e) L. Liu, Y. Liu, P. Liu, et al., Phosphine oxide functional group based three-
station molecular shuttle, Chem. Sci. 4 (2013) 1701–1706;
(f) H. Wang, Z.J. Zhang, H.Y. Zhang, Y. Liu, Synthesis of a bistable [3]rotaxane
and its pH-controlled intramolecular charge-transfer behavior, Chin. Chem.
Lett. 24 (2013) 563–567;
(g) X. Wang, K. Han, J. Li, X. Jia, C. Li, Pillar[5]arene–neutral guest recognition
based supramolecular alternating copolymer containing [c2]daisy chain and
bis-pillar[5]arene units, Polym. Chem. 4 (2013) 3998–4003.
hydrocarbon scavenger, J. Am. Chem. Soc. 135 (2013) 183–192;
(g) E.J. Dale, N.A. Vermeulen, M. Juríc9ek, et al., Supramolecular explorations:
exhibiting the extent of extended cationic cyclophanes, Acc. Chem. Res. 49
(2016) 262–273.
[4] S.T.J. Ryan, R.M. Young, J.J. Henkelis, et al., Energy and electron transfer
dynamics within a series of perylene diimide/cyclophane systems, J. Am.
Chem. Soc. 137 (2015) 15299–15307.
304
305
Please cite this article in press as: Q.-S. Fang, et al., Template-directed synthesis of pyridazine-containing tetracationic cyclophane for