C O M M U N I C A T I O N S
core layers (Figure 4a). In the BTBT core layer, the molecules take
herringbone packing (Figure 4b) to facilitate 2D carrier transport
property. In addition, a network of intermolecular interactions
through short S-S contacts (3.54 and 3.63 Å) exists. These
n
structural aspects can be related to the high mobility of C -BTBT-
based FET devices, since the existence of 2D semiconducting layers
with strong intermolecular overlap is considered to be one of the
8
prerequisites to realizing high-performance OFET devices.
In summary, we have successfully developed a series of highly
soluble molecular semiconductors, 2,7-dialkyl[1]benzothieno[3,2-
b]benzothiophenes, and tested their utility as active layers for
solution-processed OFETs. The OFET devices showed typical
p-channel FET responses with field-effect mobility higher than 1.0
Figure 2. FET characteristics of C12-BTBT-based OFET: output charac-
teristics (left) and transfer characteristics at Vd ) -60 V (right).
2
-1 -1
7
cm V
s
and Ion/Ioff of ∼10 . These results indicate that small
molecules possessing an extended aromatic core and solubilizing
long aliphatic chains are promising candidates for solution-
processible organic semiconductors.
Acknowledgment. This work was partially supported by a
Grant-in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology, Japan, and an Industrial
Technology Research Grant Program in 2006 from the New Energy
and Industrial Technology Development Organization (NEDO),
Japan. We also thank Rigaku Corp. for the measurement of in-
plane XRD.
Figure 3. In-plane XRD (2θ ø/φ scan) of a spin-coated thin-film of C12-
BTBT on Si/SiO2 substrate (incident angle, 0.19°). All the peaks are
assignable with the structural data from the single-crystal X-ray analysis
of C12-BTBT.
Supporting Information Available: Experimental details for the
syntheses, characterization and device fabrication of C
n
-BTBTs,
Crystallographic information file (CIF) and in-plane XRD for C12
-
BTBT. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(
1) (a) Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Appl. Phys. Lett. 1996, 69,
108-4110. (b) Sirringhaus, H.; Wilson, R. J.; Friend, R. H.; Inbasekaran,
M.; Wu, W.; Woo, E. P.; Grell, M.; Bradley, D. D. C. Appl. Phys. Lett.
000, 77, 406-408. (c) Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am.
4
2
Chem. Soc. 2004, 126, 3378-3379. (d) Heeney, M.; Bailey, C.; Genevi-
cius, K.; Shkunov, M.; Sparrowe, D.; Tierney, S.; McCulloch, I. J. Am.
Chem. Soc. 2005, 127, 1078-1079. (e) Li, Y.; Wu, Y.; Liu, P.; Birau,
M.; Pan, H.; Ong, B. S. AdV. Mater. 2006, 18, 3029-3032. (f) Usta, H.;
Lu, G.; Facchetti.; A.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 9034-
9
035. (g) Zhang, M.; Tsao, H. N.; Pisula, W.; Yang, C.; Mishra, A. K.;
M u¨ llen, K. J. Am. Chem. Soc. 2007, 129, 3472-3473. (h) Pan, H.; Li,
Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. J. Am. Chem. Soc. 2007, 129,
4112-4113.
(
2) McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; Macdonald, I.;
Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.;
Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater.
2006, 5, 328-333.
Figure 4. Crystal structure of C12-BTBT: (a) b-axis projection representing
a lamella structure and (b) molecular arrangement in the BTBT layer. For
clarity, alkyl groups are omitted.
(
3) (a) Herwig, P. T.; M u¨ llen, K. AdV. Mater. 1999, 11, 480-483. (b)
Mushrush, M.; Facchetti, A.; Lefenfeld, M.; Katz, H. E.; Marks, T. J. J.
Am. Chem. Soc. 2003, 125, 9414-9423. (c) Murphy, A. R.; Fr e´ chet, J.
M. J.; Chang, P.; Lee, J.; Subramanian, V. J. Am. Chem. Soc. 2004, 126,
1596-1597.
Gold source and drain electrodes (80 nm) were vapor-deposited
on top of the thin films (∼100 nm) through a shadow mask to
complete fabrication of OFET devices with channel length and
width of 50 µm and 1.5 mm, respectively. Table 1 summarizes the
FET characteristics of the devices evaluated under ambient condi-
tions without any precautions to eliminate air and moisture. Regard-
(
4) (a) Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C.-C.; Jackson, T.
N. J. Am. Chem. Soc. 2005, 127, 4986-4987. (b) Dickey, K. C.; Anthony,
J. E.; Loo, Y.-L. AdV. Mater. 2006, 18, 1721-1726. (c) Park, S. K.;
Jackson, T. N.; Anthony, J. E.; Mourey, D. A. Appl. Phys. Lett. 2007, 91,
063514.
(
5) (a) Takimiya, K.; Kunugi, Y.; Konda, Y.; Niihara, N.; Otsubo, T. J. Am.
Chem. Soc. 2004, 126, 5084-5085. (b) Takimiya, K.; Ebata, H.; Sakamoto,
K.; Izawa, T.; Otsubo, T.; Kunugi, Y. J. Am. Chem. Soc. 2006, 128,
less of the length of the alkyl groups, thin films of C
n
-BTBT deriva-
tives acted as a superior semiconducting channel (Figure 2, Table
1
2604-12605. (c) Takimiya, K.; Kunugi, Y.; Konda, Y.; Ebata, H.;
2
-1 -1
1
), and µFET of the devices was higher than 10-1 cm V
s .
Toyoshima, Y.; Otsubo, T. J. Am. Chem. Soc. 2006, 128, 3044-3050.
To understand the high performance of C -BTBT-based FET
n
(d) Yamamoto, T.; Takimiya, K. J. Am. Chem. Soc. 2007, 129, 2224-
2225.
devices, we carried out in-plane XRD analysis of the thin film and
single-crystal X-ray structural analysis for C12-BTBT. As shown
in Figure 3, clear diffractions are observed in the in-plane XRD
measurement, indicating that the film has a crystalline order in the
in-plane direction. Since all the observed peaks are assigned well
by the single-crystal lattice, the structure in the thin film is identical
with that in the single crystal. Figure 4 shows the single-crystal
structure of C12-BTBT. The crystal assumes a “layer-by-layer”
structure consisting of alternately stacked aliphatic layers and BTBT
(
6) Ko sˇ ata, B.; Kozmik, V.; Svoboda, J.; Novotan a´ , V.; Van a´ k, P.; Glogarv a´ ,
M. Liq. Cryst. 2003, 30, 603-610.
(
7) Although similar soluble molecular semiconductors and their OFETs were
reported, no detailed examination of the devices and characterization of
thin films were carried out: Laquindanum, J. G.; Katz, H. E.; Lovinger,
A. J. J. Am. Chem. Soc. 1998, 120, 664-672.
(
8) (a) Cornil, J.; Calbert, J.-P.; Beljonne, D.; Silbey, R.; Br e´ das, J.-L. AdV.
Mater. 2000, 12, 978-983. (b) Cornil, J.; Calbert, J.-P.; Br e´ das, J.-L. J.
Am. Chem. Soc. 2001, 123, 1250-1251. (c) Cornil, J.; Beljonne, D.;
Calbert, J.-P.; Br e´ das, J.-L. AdV. Mater. 2001, 13, 1053-1067.
JA074841I
J. AM. CHEM. SOC.
9
VOL. 129, NO. 51, 2007 15733