ACS Catalysis
Page 12 of 14
Fluoroborate Salts as Precatalysts for the C-H Borylation of
Heteroarenes. Chem. Commun. 2016, 52, 5387–5390.
Légaré Lavergne, J.; Jayaraman, A.; Misal Castro, L. C.;
Rochette, É.; Fontaine, F. G. Metal-Free Borylation of
Heteroarenes Using Ambiphilic Aminoboranes: On the
Importance of Sterics in Frustrated Lewis Pair C-H Bond
Activation. J. Am. Chem. Soc. 2017, 139, 14714–14723.
Rochette, É.; Desrosiers, V.; Soltani, Y.; Fontaine, F.-G.
Isodesmic C–H Borylation: Perspectives and Proof of Concept
of Transfer Borylation Catalysis. J. Am. Chem. Soc. 2019, 141,
12305–12311.
Frustrated Lewis Pairs I: Uncovering and Understanding;
Erker, G., Stephan, D. W., Eds.; Springer: Berlin, Heidelberg,
2013.
(54)
Bickelhaupt, F. M.; Houk, K. N. Analyzing Reaction Rates with
the Distortion/Interaction-Activation Strain Model. Angew.
Chem., Int. Ed. 2017, 56, 10070–10086.
1
2
3
4
5
6
7
8
(32)
(55)
(56)
Jiao, J.; Nishihara, Y. Alkynylboron Compounds in Organic
Synthesis. J. Organomet. Chem. 2012, 721–722, 3–16.
Lee, C. I.; Zhou, J.; Ozerov, O. V. Catalytic Dehydrogenative
Borylation of Terminal Alkynes by a SiNN Pincer Complex of
Iridium. J. Am. Chem. Soc. 2013, 135, 3560–3566.
Lee, C. I.; Demott, J. C.; Pell, C. J.; Christopher, A.; Zhou, J.;
Bhuvanesh, N.; Ozerov, O. V. Ligand Survey Results in
Identification of PNP Pincer Complexes of Iridium as Long-
Lived and Chemoselective Catalysts for Dehydrogenative
Borylation of Terminal Alkynes. Chem. Sci. 2015, 6, 6572–
6582.
(33)
(34)
(57)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(35)
(36)
Frustrated Lewis Pairs II: Expanding the Scope; Erker, G.,
Stephan, D. W., Eds.; Springer: Berlin, Heidelberg, 2013.
Fontaine, F. G.; Rochette, É. Ambiphilic Molecules: From
Organometallic Curiosity to Metal-Free Catalysts. Acc. Chem.
Res. 2018, 51, 454–464.
Fontaine, F. G.; Courtemanche, M. A.; Légaré, M. A.; Rochette,
É. Design Principles in Frustrated Lewis Pair Catalysis for the
Functionalization of Carbon Dioxide and Heterocycles. Coord.
Chem. Rev. 2017, 334, 124–135.
Stephan, D. W. The Broadening Reach of Frustrated Lewis Pair
Chemistry. Science 2016, 354, aaf7229.
Fontaine, F. G.; Stephan, D. W. On the Concept of Frustrated
Lewis Pairs. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
2017, 375, 20170004.
Stephan, D. W.; Erker, G. Frustrated Lewis Pair Chemistry:
Development and Perspectives. Angew. Chem., Int. Ed. 2015,
54, 6400–6441.
Stephan, D. W. Frustrated Lewis Pairs. J. Am. Chem. Soc. 2015,
137, 10018–10032.
Chernichenko, K.; Lindqvist, M.; Kótai, B.; Nieger, M.;
Sorochkina, K.; Pápai, I.; Repo, T. Metal-Free Sp2-C-H
Borylation as a Common Reactivity Pattern of Frustrated 2-
Aminophenylboranes. J. Am. Chem. Soc. 2016, 138, 4860–4868.
Iashin, V.; Chernichenko, K.; Pápai, I.; Repo, T. Atom-Efficient
Synthesis of Alkynylfluoroborates Using BF3-Based Frustrated
Lewis Pairs. Angew. Chem., Int. Ed. 2016, 55, 14146–14150.
Yin, Q.; Klare, H. F. T.; Oestreich, M. Catalytic Friedel–Crafts
C−H Borylation of Electron-Rich Arenes: Dramatic Rate
Acceleration by Added Alkenes. Angew. Chem., Int. Ed. 2017,
56, 3712–3717.
Del Grosso, A.; Pritchard, R. G.; Muryn, C. A.; Ingleson, M. J.
Chelate Restrained Boron Cations for Intermolecular
Electrophilic Arene Borylation. Organometallics 2010, 29, 241–
249.
Chen, S.; Li, B.; Wang, X.; Huang, Y.; Li, J.; Zhu, H.; Zhao, L.;
Frenking, G.; Roesky, H. W. A C(Sp2)−H Dehydrogenation of
Heteroarenes and Arenes by a Functionalized Aluminum
Hydride. Chem. - Eur. J. 2017, 23, 13633–13637.
Liu, Y. L.; Kehr, G.; Daniliuc, C. G.; Erker, G. Metal-Free
Arene and Heteroarene Borylation Catalyzed by Strongly
Electrophilic Bis-Boranes. Chem. - Eur. J. 2017, 23, 12141–
12144.
Zhang, S.; Han, Y.; He, J.; Zhang, Y. B(C6F5)3-Catalyzed C3-
Selective C-H Borylation of Indoles: Synthesis, Intermediates,
and Reaction Mechanism. J. Org. Chem. 2018, 83, 1377–1386.
Hasenbeck, M.; Müller, T.; Gellrich, U. Metal-Free: Gem
Selective Dimerization of Terminal Alkynes Catalyzed by a
Pyridonate Borane Complex. Catal. Sci. Technol. 2019, 9,
2438–2444.
Bhawal, B. N.; Morandi, B. Isodesmic Reactions in Catalysis –
Only the Beginning? Isr. J. Chem. 2018, 58, 94–103.
Based on prices from Sigma-Aldrich (2020). Sigma-Aldrich:
(accessed 14 mai 2020)
(58)
(59)
Zhou, J.; Lee, C. I.; Ozerov, O. V. Computational Study of the
Mechanism of Dehydrogenative Borylation of Terminal
Alkynes by SiNN Iridium Complexes. ACS Catal. 2018, 8, 536–
545.
Tsuchimoto, T.; Utsugi, H.; Sugiura, T.; Horio, S.
Alkynylboranes: A Practical Approach by Zinc-Catalyzed
Dehydrogenative Coupling of Terminal Alkynes with 1,8-
Naphthalenediaminatoborane. Adv. Synth. Catal. 2015, 357, 77–
82.
Procter, R. J.; Uzelac, M.; Cid, J.; Rushworth, P. J.; Ingleson, M.
J. Low-Coordinate NHC-Zinc Hydride Complexes Catalyze
Alkyne C-H Borylation and Hydroboration Using
Pinacolborane. ACS Catal. 2019, 9, 5760–5771.
Wei, D.; Carboni, B.; Sortais, J. B.; Darcel, C. Iron-Catalyzed
Dehydrogenative Borylation of Terminal Alkynes. Adv. Synth.
Catal. 2018, 360, 3649–3654.
Hu, J. R.; Liu, L. H.; Hu, X.; Ye, H. De. Ag(I)-Catalyzed C-H
Borylation of Terminal Alkynes. Tetrahedron 2014, 70, 5815–
5819.
Romero, E. A.; Jazzar, R.; Bertrand, G. Copper-Catalyzed
Dehydrogenative Borylation of Terminal Alkynes with
Pinacolborane. Chem. Sci. 2016, 8, 165–168.
Pell, C. J.; Ozerov, O. V. Catalytic Dehydrogenative Borylation
of Terminal Alkynes by POCOP-Supported Palladium
Complexes. Inorg. Chem. Front. 2015, 2, 720–724.
Dureen, M. A.; Stephan, D. W. Terminal Alkyne Activation by
Frustrated and Classical Lewis Acid/Phosphine Pairs. J. Am.
Chem. Soc. 2009, 131, 8396–8397.
Chernichenko, K.; Madarász, Á.; Pápai, I.; Nieger, M.; Leskelä,
M.; Repo, T. A Frustrated-Lewis-Pair Approach to Catalytic
Reduction of Alkynes to Cis-Alkenes. Nat. Chem. 2013, 5, 718–
723.
Jie, X.; Daniliuc, C. G.; Knitsch, R.; Hansen, M. R.; Eckert, H.;
Ehlert, S.; Grimme, S.; Kehr, G.; Erker, G. Aggregation
Behavior of a Six-Membered Cyclic Frustrated
Phosphane/Borane Lewis Pair: Formation of a Supramolecular
Cyclooctameric Macrocyclic Ring System. Angew. Chem., Int.
Ed. 2019, 58, 882 –886.
Dureen, M. A.; Brown, C. C.; Stephan, D. W. Deprotonation
and Addition Reactions of Frustrated Lewis Pairs with Alkynes.
Organometallics 2010, 29, 6594–6607.
Vasko, P.; Zulkifly, I. A.; Fuentes, M. Á.; Mo, Z.; Hicks, J.;
Kamer, P. C. J.; Aldridge, S. Reversible C−H Activation, Facile
C−B/B−H Metathesis and Apparent Hydroboration Catalysis by
a Dimethylxanthene-Based Frustrated Lewis Pair. Chem. - Eur.
J. 2018, 24, 10531–10540.
Jiang, C.; Blacque, O.; Berke, H. Activation of Terminal
Alkynes by Frustrated Lewis Pairs. Organometallics 2010, 29,
125–133.
Voss, T.; Mahdi, T.; Otten, E.; Fröhlich, R.; Kehr, G.; Stephan,
D. W.; Erker, G. Frustrated Lewis Pair Behavior of
Intermolecular Amine/B(C6F5)3 Pairs. Organometallics 2012,
31, 2367–2378.
Uhl, W.; Willeke, M.; Hengesbach, F.; Hepp, A.; Layh, M.
Aluminum and Gallium Hydrazides as Active Lewis Pairs:
Cooperative C-H Bond Activation with H-C≡C-Ph and
Pentafluorobenzene. Organometallics 2016, 35, 3701–3712.
Lawson, J. R.; Clark, E. R.; Cade, I. A.; Solomon, S. A.;
Ingleson, M. J. Haloboration of Internal Alkynes with Boronium
and Borenium Cations as a Route to Tetrasubstituted Alkenes.
Angew. Chem., Int. Ed. 2013, 52, 7518 –7522.
(37)
(38)
(39)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(67)
(68)
(69)
(48)
(49)
(70)
(71)
(50)
(51)
(72)
(73)
(52)
(53)
Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence,
Triple Zeta Valence and Quadruple Zeta Valence Quality for H
to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem.
Phys. 2005, 7, 3297–3305.
Chai, J.; Head-Gordon, M. Long-Range Corrected Hybrid
Density Functionals with Damped Atom-Atom Dispersion
Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
12
ACS Paragon Plus Environment