Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
DOI: 10.1039/D0CC00925C
this work significantly advances our ability to develop novel self-
assembling NCA-b-PPS block copolymers, which will help increase
the diversity of nanocarrier platforms available for meeting unique
drug delivery challenges.
Fig 3 Cytotoxicity of the representative copolymer formulations in
RAW 264.7 macrophages dosed from 0.125 mg/mL to 0.500
mg/mL. The dashed line highlights the 75% viability threshold.
Conflicts of interest
There are no conflicts to declare.
reported in this study. SAXS modeling clarified this morphological
ambiguity, with a good fit between the obtained scattering profile
and a spherical vesicle model (2 < 1; Fig. 2j).
References
Together, these orthogonal analyses converge on a cohesive
morphological description of the PSarc-b-PPS copolymer samples.
Prototype polymer formulations with a fPSarc above 0.38 resulted in a
single monodisperse population of micelles, while formulations with
a fPSarc below 0.38 result in a second majority population of
polymersomes (Fig. 2a). The polymers of fPSarc = 0.38 appeared to
exist at the border of the two morphologies, as the DLS and TEM
profiles matched those of the polymersome samples, but the SAXS
scattering profile best fit the core-shell model of the micelle samples.
Overall, this work highlights the innate differences across the
analytical methods as DLS and SAXS average across the population,
while the visualization of TEM is able to focus on the distinct
morphological characteristics of even minor subpopulations. These
nanostructures were also able to encapsulate hydrophobic dyes
ethyl eosin and DiI, which confirms the presence of a defined
hydrophobic space to stably retain the cargo (Table S7). As confirmed
from these techniques, this novel diblock PSarc-b-PPS copolymer is
capable of forming diverse morphologies in aqueous media with
definitive organic and aqueous lumens, which may accommodate
the encapsulation of hydrophobic and hydrophilic therapeutics as
observed for PEG-b-PPS.
To assess the toxicity of the assembled nanostructures to
mammalian cells, we performed an MTT assay using RAW 264.7
macrophages after treatment with copolymer concentrations (0.125
- 0.50 mg/mL). These structures were largely non-toxic, as observed
by the cell viability near or above 75% in each case (Fig. 3). Future
use of these materials will require cell-specific toxicity studies
relevant to the application of interest. However, the absence of
toxicity in murine-derived macrophages, capable of extensive
nanoparticle endocytosis,27-29 gives reason to be optimistic on
cellular interactions and new directions for biomedical applications.
In summary, we developed and optimized a screening workflow
that utilizes a combinatorial library of polymer variants to minimize
the material required to comprehensively assess the self-assembling
properties of the new NCA-b-PPS polymer system. As a pilot
example, we have shown that PSarc-b-PPS is a novel self-assembling
copolymer capable of stably forming both micellar and vesicular
morphologies in aqueous media. Our extensive characterization
efforts suggest PSarc-b-PPS to potentially be a versatile diblock
copolymer platform for nanocarrier fabrication, as it is amenable to
1
K. E. B. Doncom, L. D. Blackman, D. B. Wright, M. I. Gibson and R. K.
O’Reilly, Chem. Soc. Rev., 2017, 46, 4119–4134.
2
Y. Shamay, J. Shah, M. Işık, A. Mizrachi, J. Leibold, Nat Mater, 2018, 17,
361–368.
M. Frey, S. Bobbala, N. Karabin and E. Scott, Nanomedicine, 2018, 13, 142.
G. Y. Tonga, K. Saha and V. M. Rotello, Adv Mater, 2014, 26, 359–370.
J. Zagorski, J. Debelak, M. Gellar, J. A. Watts and J. A. Kline, J Immunol,
2003, 171, 5529–5536.
A. Napoli, M. Valentini, N. Tirelli, M. Müller and J. A. Hubbell, Nat Mater,
2004, 3, 183–189.
S. Yi, S. D. Allen, Y.-G. Liu, B. Z. Ouyang, X. Li, ACS Nano, 2016, 10, 11290–
11303.
3
4
5
6
7
8
9
A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis and J. A. Hubbell, ACS
Nano, 2012, 6, 7850–7857.
E. Nicol, T. Nicolai and D. Durand, Macromolecules, 1999, 32, 7530–7536.
10 S. Allen, O. Osorio, Y.-G. Liu and E. Scott, J Control Release, 2017, 262, 91–
103.
11 S. D. Allen, Y.-G. Liu, S. Bobbala, L. Cai, P. I. Hecker, Nano Res., 2018, 11,
5689–5703.
12 G. J. M. Habraken, K. H. R. M. Wilsens, C. E. Koning and A. Heise, Polym.
Chem., 2011, 2, 1322–1330.
13 H. Lu, J. Wang, Z. Song, L. Yin, Y. Zhang, Chem. Commun., 2014, 50, 139–
155.
14 A. R. Statz, A. E. Barron and P. B. Messersmith, Soft Matter, 2008, 4, 131–
139.
15 S. Bleher, J. Buck, C. Muhl, S. Sieber, S. Barnert, Small, 2019, 15, e1904716.
16 X. Tao, H. Chen, S. Trepout, J. Cen, J. Ling, Chem. Commun., 2019, 55,
13530–13533.
17 H. Tanisaka, S. Kizaka-Kondoh, A. Makino, S. Tanaka, M. Hiraoka,
Bioconjugate Chem., 2008, 19, 109–117.
18 A. Makino, R. Yamahara, E. Ozeki and S. Kimura, Chem. Lett., 2007, 36,
1220–1221.
19 D. Huesmann, O. Schäfer, L. Braun, K. Klinker, T. Reuter, Tetrahedron Lett,
2016, 57, 1138–1142.
20 J. Liu and J. Ling, J. Phys. Chem. A, 2015, 119, 7070–7074.
21 S. Cerritelli, C. P. O’Neil, D. Velluto, A. Fontana, M. Adrian, Langmuir, 2009,
25, 11328–11335.
22 S. Bobbala, S. D. Allen, S. Yi, M. Vincent, M. Frey, Nanoscale, 2020, 12,
5332–5340.
23 S. D. Allen, Y.-G. Liu, T. Kim, S. Bobbala, S. Yi, Biomater. Sci., 2019, 7, 657–
668.
24 N. B. Karabin, S. Allen, H.-K. Kwon, S. Bobbala, E. Firlar, Nat Commun, 2018,
9, 37.
25 F. Du, Y.-G. Liu and E. A. Scott, Cel. Mol. Bioeng., 2017, 10, 357–370.
26 S. D. Allen, S. Bobbala, N. B. Karabin and E. A. Scott, Nanoscale Horiz.,
2019, 4, 258–272.
27 D. J. Dowling, E. A. Scott, A. Scheid, I. Bergelson, S. Joshi, J Allergy and Clin
Immunol, 2017, 140, 1339–1350.
28 S. Yi, X. Zhang, M. H. Sangji, Y. Liu, S. D. Allen, Adv Funct Mater, 2019, 29,
1904399.
29 S. D. Allen, S. Bobbala, N. B. Karabin, M. Modak and E. A. Scott, ACS Appl
Mater Interfaces, 2018, 10, 33857–33866.
the assembly of diverse morphologies via
a scalable FNP
methodology. Our pipeline is particularly well-suited for evaluating
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins