February 1998
SYNTHESIS
199
Table 4. Spectroscopic and Physical Data of the Compounds 11a and b, and 13a–da
Prod- Yield mp (°C)
uct (%) or bp
IR
n (cm )
1H NMR (CDCl3)
d, J (Hz)
13C NMR (CDCl3)
d, J (Hz)
MS
(70 eV)
m/z (%)
–
1
(°C)/mbar
2
1
1a 50
175/0.05
1727, 1642, 1.32 (m, 12 H, CH ), 4.15 (m, 16.25, 16.35 (s, 2 C, CH ), 62.99 (d, 1 C, J = 6,
(EI) 352
(M , 4)
3
3
CP
2
+
1
1
1
9
7
582, 1446, 8H, CH ), 7.77 (dm, 1 H,
CH ), 63.24 (d, 1 C, J = 6, CH ), 127.51 (dd, 1
2
2
CP
2
3
2
392, 1366,
256, 1022, (dd, 1 H, J = 6.5, J = 13,
JPH = 12.5, Py H-3), 8.22
C, J = 8.5, Py C-3), 128.97 (dd, 1 C,
CP
4 2
3
JCP = 8.5, J = 26, Py C-5), 138.22 (dd, 1 C,
CP
1
PH
3
72, 828,
94, 555
Py H-5), 8.90 (t, 1 H, J = 4.8,
Py H-6)
JCP = 12, J = 186, Py C-4), 150.17 (dd, 1 C,
CP
3 3
3J = 12, J = 22, Py C-6), 152.4 (dd, 1 C, J
CP CP CP
1
=
12, J = 228, Py C-2)
CP
1712, 1652, 1.38 (dd, 12 H, J = 7.5, 4JPH
23.81, 24.03 (t, 2 C, J = 3.7, CH ), 71.84 (d, 2
C, J = 6, CH), 127.12 (dd, 1 C, J = 3.8, J
386, 1255, CH), 4.89 (m, 2 H, CH), 7.73 = 8.4, Py C-3), 128.49 (dd, 1 C, J = 8.5, J
3
(FAB) +
408 (M ,
100)
1
1
1
1b 10
155–l70/
CP
3
2
2
2
0
.05
1581, 1466, = 42.5, CH ), 4.67 (m, 2 H,
3
CP
CP
CP
=
4
2
1
9
8
5
CP
CP
3
3
1
89, 888,
17, 769,
56
(dm, 1 H, J = 12.5, Py H-3), 25, Py C-5), 139.41 (dd, 1 C, J = 11, J = 187,
PH CP CP
3 3
8.18 (dd, 1 H, J = 6.4,
JPH – 13, Py H-5), 8.86 (t,
Py C-4), 150.35 (dd, 1 C, J = 12, J = 22, Py
CP CP
3 1
3
C-6), 153.76 (dd, 1 C, J = 12, J = 228, Py C-2)
CP CP
1
H, J = 4.8, Py H-6)
3
3a 50
128
3062, 1585, 1.31 (t, 6 H, J = 7, CH ), 4.23 16.23 (d, 2 C, J = 6.25, CH ), 64.03 (d, 2 C,
482, 1438, (m, 4 H, CH ), 7.77 (m, 16 H, JCP = 6.4, CH ), 115.31 (d, 3 C, J = 90, Ph C-
(FAB)
476 (M-I,
3
CP
3
2
1
1
1
2
2
CP
270, 1225, Ph, H-3), 7.96 (dd, 1 H, J =
1), 120.47 (q, 1 C, JCF = 320, CF ), 130.25 (m, 3 C, 85)
Py C-3/5/4), 131.10 (d, 6 C, J = 13, Ph C-3/5),
134.63 (d, 6 C, J = 10.5, Ph C-2/6), 137.33 (d, 3
3
3
3
1152, 1109, 6.5, J = 13, H-5), 9.23 (t,
PH
CP
2
1
5
032, 638,
24
1 H, J = 5, H-6)
CP
4
3
C, J = 3, Ph C-4), 153.60 (dd, 1 C, J = 12,
CP
CP
3
JCP = 21.5, Py C-6)
1585, 1569, 1.29 (dd, 6 H, J = 6, 4JPH
1
=
23.80 (dd, 2 C, J = 5, J = 12.4, CH ), 73.13 (d,
440, 1260, 20, CH ), 4.84 (m, 2 H, CH), 2 C, J = 6.4, CH), 115.40 (d, 3 C, J = 89, Ph
3
(FAB)
504 (M-I,
12)
3b 55
114–118
CP
3
2
1
3
CP
CP
1
225, 1153, 7.7 (m, 17 H, Ph, H-3/5),
C-1), 122.39 (q, 1 C, J = 320.79, CF ), 129.32
CF 3
3 1
1108, 1034, 9.22 (t, 1 H, J = 5, H-6)
(dd, 1 C, J = 12.5, J = 83, Py C-4), 129.44
CP CP
4 2
6
38, 525
(dd, 1 C, J = 8.5, J = 26, Py C-5), 129.94
CP
CP
2
2
(
dd, 1 C, J = 3.5, J = 8. 1, Py C-3), 131.1 (d,
CP CP
3 2
6
1
1
1
C, J = 13, Ph C-3/5), 134.61 (d, 6 C, J
=
CP
CP
4
0.5, Ph C-2/6), 136.39 (d, 3 C, J = 3, Ph C-4),
52.73 (dd, 1 C, J = 12, J = 21.5, Py C-6),
55.81 (dd, 1 C, J = 9, J = 228, Py C-2)
CP
3
3
CP
CP
3
1
CP
CP
3
1
3c 30
oily
product
2964, 2936, 0.89 (t, 9 H, J = 5.5, Bu
2874, 1742, CH ), 1.29 (t, 6 H, J = 7, Et
13.27 (s, 3 C, Bu CH ), 16.32 (d, 2 C, J = 6, Et
(FAB)
3
CP
1
CH ), 18.83 (d, 3 C, J = 47.5, Bu P-CH ), 23.72 417 (M-
3 CP 2
2
3
1
1
1
1
5
635, 1575, CH ), 1.45 (m, 12 H, Bu
(m, 8 C, Bu CH ), 63.96 (d, 2 C, J = 6.3, Et
I+1, 100)
3
2
CP
467, 1371, CH ), 2.60 (m, 6 H, Bu CH ), CH ); 123.83 (q, 1 C, J = 318, CF ), 127.99 (dd,
2
2
2
CF
3
4
2
261, 1156, 4.24 (m, 4 H, Et CH ), 8.04
1 C, J = 6.4, J = 26, Py C-5), 128.52 (dd,
CP CP
2 2
2
3
029, 638,
73
(dd, 1 H, J = 6, J = 11, Py 1 C, J = 3.3, J = 7. 1, Py C-3), 129. 17 (dd, 1 C,
PH
CP
CP
3
3
1
1
H-3), 8.24 (dd, 1 H, J = 5,
JPH = 12, Py H-5), 9.13 (t, 1
JCP = 12.4, J = 72.1, Py C-4), 152.45 (dd, 1 C,
JCP = 8.8, J = 21.5, Py C-6), 154.24 (dd, 1 C,
CP
3
3
CP
H, J = 4.5, Py H-6)
JCP = 7.9, JCP = 226, Py C-2)
1
1
3d 29
oily
product
2965, 2936, 0.89 (t, 9 H, J = 7, Bu CH ),
13.24 (s, 3C, Bu CH ), 18.63 (d, 3 C, J = 47,
(FAB)
444 (M-I,
9)
3
3
CP
4
2874, 1725, 1.30 (dd, 12 H, J = 6, J
=
Bu P-CH ), 23.63 (m, 10 C, i-Pr CH , Bu CH ),
2 3 2
2
PH
1
1
1
633, 1575, 22.5, i-Pr CH ), 1.46 (m, 12
72.97 (d, 2 C, J = 6.5, CH), 129.7 (q, 1 C, J
=
3
CP
CF
4
2
467, 1379, H, Bu CH ), 2.63 (m, 6 H, Bu 320, CF ), 127.72 (dd, 1 C, J = 8.5, J = 26,
2
3
CP
CP
2
2
260, 1224, CH ), 4.81 (m, 2 H, i-Pr CH), Py C-5), 128.34 (dd, J = 4, J = 7, Py C-3),
2
CP
CP
3
3
1
1154, 998,
8.02 (dd, 1 H, J = 6.5, J
=
128.96 (dd, 1 C, J = 12.5, J = 72.5, Py C-4),
CP
3 3
PH
6
38, 573
12, Py H-3), 8.21 (dm, 1 H,
152.41 (dd, 1 C, J = 9, J = 22, Py C-6),
CP CP
3 1
3
JPH = 12, Py H-5), 9.11 (t, 1 155.30 (dd, 1 C, J = 8, J = 227, Py C-2)
CP
CP
H, J = 4.5, Py H-6)
Satisfactory microanalyses obtained: C ± 0.32, H ± 0.31, N ± 0.29, S ± 0.16.
a
To separate minor amounts of impurities to get analytical purity, it is 2,4-Bis(dialkoxyphosphoryl)pyridines 11:
useful to perform a bulb tube distillation, or TLC (silica gel, EtOAc). Under Et O, the residue was cooled (6 °C) for 8 h. Then, the precipi-
2
tated ammonium salt was filtered off and the solvent was evaporated.
Disubstituted Pyridines 11a and b, and 13a–d; General Procedure: The residue (a yellow-brown oil) was purified by TLC (silica gel,
5
To a stirred solution of 9 or 5 (5 mmol) in CH Cl (50 mL), 2 (1.4 g, EtOAc/MeOH 10:1).
2
2
5
mmol) was added dropwise at r.t. A clouding of the solution was ob-
served in the case of 11, and 13c and d. After 0.5 h the trialkyl phos-
phite (6 mmol) was added. The solution became transparent after a [2-(Dialkoxyphosphoryl)-4-pyridyl]triphenylphosphonium Tri-
few minutes, then NEt (0.6 g, 6 mmol) was added. The mixture was fluoromethanesulfonates 13a and b:
3
stirred for 2 h, and the solvent was evaporated in vacuo. Specific de- The residue was treated with 5% aq NaHCO (25 mL), extracted with
3
tails for the synthesis of compounds 11a and b, 13a–d are given below. CH Cl (3 x 30 mL), dried (MgSO ), and evaporated to give the crude
2
2
4