7334
D. Dong et al. / Tetrahedron Letters 46 (2005) 7331–7335
9. (a) Tanemura, K.; Dohya, H.; Imamura, M.; Suzuki, T.;
Horaguchi, T. J. Chem. Soc., Perkin Trans. 1 1996, 453–
458; (b) Komatsu, N.; Tanguchi, A.; Uda, M.; Suzuki, H.
Chem. Commun. 1996, 1847–1848.
10. (a) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287–
290; (b) Curini, M.; Marcotulio, M. C.; Pisani, E.; Rosati,
O. Synlett 1997, 769–770; (c) Mehta, G.; Uma, R.
Tetrahedron Lett. 1996, 37, 1879–1882.
11. (a) Tani, H.; Inamasu, T.; Tamura, R.; Suzuki, H. Chem.
Lett. 1990, 1323–1326; (b) Tani, H.; Inamasu, T.; Masu-
moto, K.; Tamura, R.; Shimizu, H.; Suzuki, H. Phospho-
rus, Sulfur Silicon Relat. Elem. 1992, 67, 261–266.
12. (a) Caputo, R.; Ferreri, C.; Palumbo, G.; Capozzi, G.
Tetrahedron 1986, 42, 2369–2376; (b) Caputo, R.; Ferreri,
C.; Palumbo, G. Synthesis 1991, 223–224; (c) Afonso, C.
A. M.; Barros, M. T.; Godinho, L. S.; Maycock, C. D.
Synthesis 1991, 575–580.
13. (a) Firouzabadi, H.; Iranpoor, N.; Karami, B. Synlett
1999, 413–414; (b) Firouzabadi, H.; Iranpoor, N.; Haz-
arkhani, H.; Karami, B. J. Org. Chem. 2002, 67, 2572–
2576; (c) Firouzabadi, H.; Iranpoor, N.; Garzan, A.;
Shaterian, H. R.; Ebrahimzadeh, F. Eur. J. Org. Chem.
2005, 416–428; (d) Shukla, V. G.; Salgaonkar, P. D.;
Akamanchi, K. G. Synlett 2005, 1483–1485.
MeOH. Prompted by HCl generated, compound 1
undergoes decarboxylation to give a ketene dithioacetal
4. With the attacks by methanol and H2O, 4 is trans-
formed into a thiol-bearing intermediate 5, which reacts
with a-bromo/hydroxy ketones 2. Most likely the mech-
anism for a-bromo ketones is different from that for a-
hydroxy ketones although they are finally converted into
the same compounds of type 3.
In summary, a facile one-step synthesis of substituted
dihydro-1,4-dithiins and -1,4-dithiepins 3 based on the
reactions of a-bromo/hydroxy ketones 2 with a-oxo
ketene cyclic dithioacetals 1a and 1b has been developed.
This novel protocol is associated with simple procedure,
mild conditions, and good yields, especially in relation
to recent environmental concerns. Further investiga-
tions of the scope of the reaction and application are
in progress.
Acknowledgments
14. Nakayama, J.; Nakamura, Y.; Hoshino, M. Heterocycles
1985, 23, 1119–1122.
Financial supports of this research by NNSFC
(20272008) and the Key Project of the Ministry of Edu-
cation of China (105061) are greatly acknowledged.
15. (a) Caputo, R.; Palumbo, G.; Pedatetta, S. Tetrahedron
1994, 50, 7265–7268; (b) Caputo, R.; Guaragna, A.;
Palumbo, G.; Pedatetta, S. J. Org. Chem. 1997, 62, 9369–
9371; (c) Caputo, R.; Ciriello, U.; Festa, P.; Guaragna, A.;
Palumbo, G.; Pedatetta, S. Eur. J. Org. Chem. 2003, 2617–
2621.
References and notes
16. Scott, M. K.; Ross, T. M.; Lee, D. H. S.; Wang, H.;
Shank, R. P.; Wild, K. D.; Davis, C. B.; Crooke, J. J.;
Potocki, A. C.; Reitz, A. B. Bioorg. Med. Chem. 2000, 8,
1383–1391.
1. (a) Kocienski, P. J. Protecting Groups; Thieme: Stuttgart,
1994; (b) Greene, T. W.; Wuts, P. G. M. Protective Groups
in Organic Synthesis, 2nd ed.; John Wiley and Sons: New
York, 1999.
17. (a) Liu, Q.; Che, G.; Yu, H.; Liu, Y.; Zhang, J.; Zhang, Q.;
Dong, D. J. Org. Chem. 2003, 68, 9148–9150; (b) Yu, H.;
Liu, Q.; Yin, Y.; Fang, Q.; Zhang, J.; Dong, D. Synlett
2004, 999–1002; (c) Liu, J.; Liu, Q.; Yu, H.; Ouyang, Y.;
Dong, D. Synth. Commun. 2004, 34, 4545–4556; (d) Dong,
D.; Ouyang, Y.; Yu, H.; Liu, Q.; Liu, J.; Wang, M.; Zhu,
J. J. Org. Chem. 2005, 70, 4535–4537; (e) Yu, H.; Dong,
D.; Ouyang, Y.; Liu, Q. Can. J. Chem., in press.
18. (a) Dieter, R. K. Tetrahedron 1986, 42, 3029–3096; (b)
Junjappa, H.; Ila, H.; Asokan, C. V. Tetrahedron 1990, 46,
5423–5506; (c) Kolb, M. Synthesis 1990, 171–190.
19. (a) Choi, E. B.; Youn, I. K.; Pak, C. S. Synthesis 1988,
792–794; (b) Zhang, S.; Liu, Q.; Zhu, Z.; Zhang, C.;
Huang, H. Chem. J. Chin. Univ. 1994, 15, 1155–1158.
20. General procedure for the preparation of 3 between 1 and
2 (3a as an example): 1a (1.2 mmol), 2a (1.0 mmol),
methanol (10 mL), and acetyl chloride (0.36 mL, 5 mmol)
were added into a flask equipped with a condenser. The
mixture was heated to reflux and stirred for about 5 h
when 2a was consumed as indicated by TLC. The reaction
mixture was cooled down to ambient temperature and
neutralized with 10% aq NaHCO3. After extractive
workup, separation was carried out over silica gel chro-
matography (eluent: petroleum ether–diethyl ether = 90:1,
v/v) to give 3a as a white solid. (yield: 60.1%, mp: 59–
61 °C).
2. (a) Breit, B. Angew. Chem., Int. Ed. 1998, 37, 453–456; (b)
Smith, A. B., III; Pitram, S. M.; Gaunt, M. J.; Kozmin, S.
A. J. Am. Chem. Soc. 2002, 124, 14516–14517.
3. (a) Page, P. C. B.; Prodger, J. C.; Westwood, D.
Tetrahedron 1993, 49, 10355–10368; (b) Tani, H.; Masu-
moto, K.; Inamasu, T.; Suzuki, H. Tetrahedron Lett. 1991,
32, 2039–2042; (c) Tietze, L. F.; Weigand, B.; Wulff, C.
Synthesis 2000, 69–71.
4. (a) Garlaschelli, L.; Vidari, G. Tetrahedron Lett. 1990, 31,
5815–5816; (b) Patney, H. K. Tetrahedron Lett. 1991, 32,
2259–2260; (c) Kumar, P.; Reddy, R. S.; Singh, A. P.;
Pandey, B. Tetrahedron Lett. 1992, 33, 825–826; (d)
Saraswathy, V. G.; Sankararaman, S. J. Org. Chem.
1994, 59, 4665–4670; (e) Anand, R. V.; Saravanan, P.;
Singh, V. K. Synlett 1999, 415–416; (f) Firouzabadi, H.;
Iranpoor, N.; Hazarkhani, H. J. Org. Chem. 2001, 66,
7527–7529; (g) Muthusamy, S.; Babu, S. A.; Gunanathan,
C. Tetrahedron Lett. 2001, 42, 359–362; (h) Samajdar, S.;
Basu, M. K.; Becker, F. F.; Banik, B. K. Tetrahedron Lett.
2001, 42, 4425–4427; (i) Kamal, A.; Chouhan, G. Tetra-
hedron Lett. 2002, 43, 1347–1350; (j) Firouzabadi, H.;
Iranpoor, N.; Amani, K. Synthesis 2002, 59–62; (k)
Kamal, A.; Chouhan, G. Tetrahedron Lett. 2003, 44,
3337–3340.
5. Degani, I.; Fochi, R.; Regondi, V. Synthesis 1981, 51–52.
6. (a) Liu, H. J.; Winszniewski, V. Tetrahedron Lett. 1988,
29, 5471–5474; (b) Ghringhelli, D. Synthesis 1982, 580–
581.
7. Haroutounian, S. A. Synthesis 1995, 39–40.
8. (a) Bandgar, B. P.; Kasture, S. P. Green Chem. 2000, 2,
154–156; (b) Karami, B.; Hazarkhani, H. Synthesis 2003,
2547–2551.
5-Phenyl-2,3-dihydro-1,4-dithiine 3a, white solid, mp:
1
59–61 °C; H NMR (400 MHz, CDCl3): d: 3.22–3.25 (m,
2H), 3.29–3.33 (m, 2H), 6.39 (s, 1H), 7.30 (m, 3H), 7.40 (m,
2H); 13C NMR (125 MHz, CDCl3): 26.6, 27.6, 113.1, 126.7,
127.1, 128.5, 133.4, 138.7; IR (KBr, neat): 3070, 2972, 1687,
1643, 1597, 1493, 1241, 1142, 762 cmÀ1; Anal. Calcd for
C10H10S2: C, 61.81; H, 5.19. Found: C, 61.71; H, 5.22.