Communications
were characterized by IR spectroscopy, elemental analysis,
[3] a) T. Nitta, M. Nozawa, S. Kida, J. Chem. Eng. Jpn. 1992, 25,
76 –182; b) J. Economy, L. Dominguez, C. L. Mangun, Ind.
[
27a]
1
thermal gravimetric analysis (TGA), gas pycnometry,
SEM imaging.
and
Eng. Chem. Res. 2002, 41, 6436 –6442.
[
4] a) X. Huang, H. Li, Q. Wang, W. Liu, L. Shi, L. Chen, Wuli 2002,
Under a nitrogen atmosphere, a 0.3 g consolidated sample
of 1 was again heated to 1508C with the two different heating
protocols (see above). The sheet-like and rope/ball-like
carbon nitrides C N were characterized by IR spectroscopy,
31, 444 –449; b) A. Mabuchi, K. Tokumitsu, H. Fujimoto, T.
Kasuh, J. Electrochem. Soc. 1995, 142, 1041 –1046; c) H.-Y. Lee,
S.-M. Lee, Electrochem. Commun. 2004, 6, 465 –469; d) S.
Dasgupta, R. Bhola, R. Jacobs, K. James, US 6261722, 2001.
3
5
[
27b]
elemental analysis, TGA, gas pycnometry,
imaging (Figure 6).
and SEM
[5] a) H. Honda, Mol. Cryst. Liq. Cryst. 1983, 94, 97 – 108; b) T.
Yokono, M. Nakahara, K. Makino, Y. Sanada, J. Mater. Sci. Lett.
1988, 7, 864 –866.
[
[
[
6] S. Isobe, T. Ichikawa, J. I. Gottwald, E. Gomibuchi, H. Fujii, J.
Phys. Chem. Solids 2004, 65, 535 –539.
7] a) Z. C. Kang, Z. L. Wang, J. Phys. Chem. 1996, 100, 5163 –5165;
b) H. Shioyama, Carbon 2003, 41, 2882 –2884.
8] a) E. K. Wilson, Chem. Eng. News 2004, 82, 34 –35, and
references therein; b) F. Z. Cui, D. J. Li, Surf. Coat. Technol.
2000, 131, 481 –487, and references therein.
[
9] a) D. J. Li, L. F. Niu, Bull. Mater. Sci. 2003, 26, 371 –375; b) D. J.
Li, S. J. Zhang, L. F. Niu, Appl. Surf. Sci. 2001, 180, 270 –279.
[
10] a) D. Y. Zhong, G. Y. Zhang, S. Liu, E. G. Wang, Q. Wang, H. Li,
X. J. Huang, Appl. Phys. Lett. 2001, 79, 3500 –3502; b) M.
Kawaguchi, Adv. Mater. 1997, 9, 615 –625.
Figure 6. SEM images of sheet-like (left) and rope/ball-like (right)
[
11] H. L. Chang, C. M. Hsu, C. T. Kuo, Appl. Phys. Lett. 2002, 80,
carbon nitride C N .
3
5
4
638 –4640.
12] J. N. Armor in Materials Chemistry, An Emerging Discipline
Eds.: L. V. Interrante, L. A. Caspar, A. B. Ellis), Advances in
[
(
Unlike many other organic compounds, for example,
[
28]
Chemistry Series, American Chemical Society, Washington, DC,
1995, Ch. 13, p. 245.
meso-carbon microbeads,
mesophase pitch-based carbon
[
29]
[30]
fibers,
zines,
and non-azido-substituted triazines
and hepta-
[
[
13] I. Widlow, Y. W. Chung, Braz. J. Phys. 2000, 30, 490 –498.
14] W. Kulisch, C. Popov, L. Zambov, New Diamond Front. Carbon
Technol. 2001, 11, 53 –76.
[
31] [16]
1
and other polyazido compounds containing only
[
32]
C and N atoms
are ideal precursors for nitrogen-rich
carbon nitrides because of their clean and thermodynamically
favorable decompositions, which presumably extrude nitro-
gen gas as the only by-product [Eqs. (1) and (2)].
[
15] a) E. G. Gillan, Chem. Mater. 2000, 12, 3906 –3912; b) W. Long,
Y. Shun, Y. Bing, Rare Met. Mater. Eng. 2002, 31, 96 –100, and
references therein; c) A. K. Pal, Curr. Sci. 2002, 83, 225 –236.
16] J. H. Marcus, A. Remanick, J. Org. Chem. 1963, 28, 2372 –2375.
[
D
3
3
C N !2 C H þ 11 N
ð1Þ
ð2Þ
[17] M. D. Coburn, G. A. Buntain, B. W. Harris, M. A. Hiskey, K.-Y.
Lee, D. G. Ott, J. Heterocycl. Chem. 1991, 28, 2049 –2050.
[18] D. E. Chavez, M. A. Hiskey, J. Heterocycl. Chem. 1998, 35,
2
10
3
4
2
D
C N !2 C H þ 10 N
2
10
3
5
2
1329 –1332.
[
19] a) Since 1 is extremely sensitive to friction, impact, and electro-
static discharge, one should always handle 1 wet with thick
gloves behind a glass shield and limit the amount to less than
More importantly, the conversion processes to nitrogen-
rich carbon nitrides from these polyazido compounds gen-
erate no environmental waste or pollution.
300 mg; b) For an explanation of methods for characterizing
explosive sensitivity, see R. T. Paine, W. Koestle, T. T. Borek, E.
Duesler, M. A. Hiskey, Inorg. Chem. 1999, 38, 3738 –3743;
The reproducible results in this study are novel and
important in demonstrating that 1 undergoes decomposition
in a single-step heating process to give 1) the first carbon
nanospheres ranging from 5 to 50 nm at low temperature and
without applied pressure and 2) three novel morphologies of
nitrogen-rich carbon nitrides. Remarkably, since the texture,
size, and nitrogen content of carbon nitrides (1 = 0.58–
c) 10 mL of a solution of NaNO (0.61 g, 8.84 mmol) was added
2
dropwise to a 35 mL of 3m HCl containing 3 (0.5 g, 3.52 mmol)
at 08C. The bright orange precipitated solid was collected by
filtration and washed thoroughly with cold water. The sample
was mounted for drying above a stainless steel bomb in a hood
behind a glass shield overnight. 1 was then washed into the bomb
with CH Cl that was gradually evaporated. The lid of the bomb
ꢀ3
2
2
1
.32 gcm ) are highly dependent on the heating protocols,
was secured tightly before the assembled apparatus was moved.
20] CCDC-238514 (1) contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cam-
bridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
they can be tailored for particular applications.
[
Received: May 18, 2004
Revised: July 23, 2004
Keywords: azides · carbon · nanostructures · nitrides · nitrogen
.
[
21] Characterization of 1: DSC: fast decomposition at 1308C. Cyclic
voltammetry in 0.2m Bu NPF /CHCl (vs SSCE): E = + 0.44,
4
6
3
1/2
ꢀ
1
[
1] S.-I. Lee, S.-H. Yoon, C. W. Park, Y. Korai, I. Mochida, Carbon
003, 41, 1652 –1654.
2] a) M. Inagaki, Y. Tamai, S. Naka, K. Kamiya, Carbon 1974, 12,
39 –643; b) Y. Yamada, T. Imamura, H. Kakiyama, H. Honda,
S. Oi, K. Fukuda, Carbon 1974, 12, 307 –319.
ꢀ0.09 V. IR (Nujol mull): n˜ (N
n˜ (tetrazine) = 1460 (vs), 1193 (vs), 1065 (vs), 927 (vs), 817 (vs),
546 cm (vs). UV/Vis (CHCl ): lmax (e): 541 sh (4.64 ꢀ 10 ), 521
3
) = 2169 (vs), 2142 cm (vs);
2
ꢀ
1
2
[
3
2
3
4
ꢀ1
ꢀ1
6
(6.50 ꢀ 10 ), 373 (1.79 ꢀ 10 ), 268 nm (1.94 ꢀ 10 m cm ).
3
1
C NMR (300 MHz, CDCl , 258C): d = 164.2 ppm.
3
5
660
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 5658 –5661