Communication
ChemComm
proved to form the A4L4 tetrahedral complex (TMA)12[(PO4)4(LCN)4]
(6) by NMR and HR-MS (Fig. S32 and S43, ESI†). Complex 2
bearing the chiral ligand L1S was thus mixed with complex 6
in different proportions, 4 : 0, 3 : 1, 2 : 2, 1 : 3 and 0 : 4, respectively,
in acetonitrile, keeping the total concentration at c = 4 Â
10À5 mol LÀ1. Concentration-dependent 1H NMR measure-
ments confirmed the stability of tetrahedral cages at tested
concentrations (Fig. S50, ESI†). The much more complicated
NMR spectra of the mixed solution indicate the ligand exchange
process (Fig. S51, ESI†), where chiral and achiral ligands are
mixed together to build cage structures with concomitant
appearance of new peaks in NMR spectra. In the mass spectra,
the mixed cages are also found (Fig. S52 and S53, ESI†). In the
CD spectra (Fig. S49, ESI†), upon formation of the mixed-ligand
cages when L1S was mixed with the achiral LCN, the CD signals
gradually weakened, but can still be observed even in the 1 : 3
(L1S to LCN) system, suggesting the retention of chirality in the
chiral–achiral mixed-ligand systems.
2 (a) M. Pan, K. Wu, J.-H. Zhang and C.-Y. Su, Coord. Chem. Rev., 2019,
378, 333–349; (b) D. K. Smith, Chem. Soc. Rev., 2009, 38, 684–694;
(c) O. J. G. M. Goor, S. I. S. Hendrikse, P. Y. W. Dankers and
E. W. Meijer, Chem. Soc. Rev., 2017, 46, 6621–6637; (d) C. Tan,
J. Jiao, Z. Li, Y. Liu, X. Han and Y. Cui, Angew. Chem., Int. Ed.,
2018, 57, 2085–2090; (e) L.-J. Chen, H.-B. Yang and M. Shionoya,
Chem. Soc. Rev., 2017, 46, 2555–2576.
3 (a) W.-Q. Xu, Y.-Z. Fan, H.-P. Wang, J. Teng, Y.-H. Li, C.-X. Chen,
D. Fenske, J.-J. Jiang and C.-Y. Su, Chem. – Eur. J., 2017, 23,
´
3542–3547; (b) J. M. Rivera, T. Martın and J. Rebek, Science, 1998,
279, 1021–1023; (c) T. R. Cook and P. J. Stang, Chem. Rev., 2015, 115,
7001–7045; (d) S. Yoshioka, Y. Inokuma, M. Hoshino, T. Sato and
M. Fujita, Chem. Sci., 2015, 6, 3765–3768; (e) A. M. Castilla, W. J.
Ramsay and J. R. Nitschke, Acc. Chem. Res., 2014, 47, 2063–2073;
( f ) M. Mastalerz, Acc. Chem. Res., 2018, 51, 2411–2422; (g) L.-L. Yan,
C.-H. Tan, G.-L. Zhang, L.-P. Zhou, J.-C. Bu¨nzli and Q.-F. Sun, J. Am.
Chem. Soc., 2015, 137, 8550–8555; (h) D. S. Kim and J. L. Sessler,
Chem. Soc. Rev., 2015, 44, 532–546.
4 (a) S. P. Argent, T. Riis-Johannessen, J. C. Jeffery, L. P. Harding and
M. D. Ward, Chem. Commun., 2005, 4647–4649; (b) A. V. Davis,
D. Fiedler, M. Ziegler, A. Terpin and K. N. Raymond, J. Am. Chem.
Soc., 2007, 129, 15354–15363; (c) A. M. Castilla, N. Ousaka,
R. A. Bilbeisi, E. Valeri, T. K. Ronson and J. R. Nitschke, J. Am. Chem.
Soc., 2013, 135, 17999–18006; (d) C.-T. Yeung, K.-H. Yim, H.-Y. Wong,
R. Pal, W.-S. Lo, S.-C. Yan, M. Y.-M. Wong, D. Yufit, D. E. Smiles,
L. J. McCormick, S. J. Teat, D. K. Shuh, W.-T. Wong and G.-L. Law,
Nat. Commun., 2017, 8, 1128; (e) C. M. Hong, R. G. Bergman, K. N.
Raymond and F. D. Toste, Acc. Chem. Res., 2018, 51, 2447–2455;
( f ) Y. Fang, J. A. Powell, E. Li, Q. Wang, Z. Perry, A. Kirchon, X. Yang,
Z. Xiao, C. Zhu, L. Zhang, F. Huang and H.-C. Zhou, Chem. Soc. Rev.,
2019, 48, 4707–4730; (g) Z. Wang, L.-P. Zhou, T.-H. Zhao, L.-X. Cai,
X.-Q. Guo, P.-F. Duan and Q.-F. Sun, Inorg. Chem., 2018, 57, 7982–7992;
(h) C. Zhao, Q.-F. Sun, W. M. Hart-Cooper, A. G. DiPasquale, F. D. Toste,
R. G. Bergman and K. N. Raymond, J. Am. Chem. Soc., 2013, 135,
18802–18805.
In summary, tetrahedral cages formed by ligands (L1R/1S
)
with chiral sites directly linked to the coordination center were
enantiopure products, while the chirality of the cages with ligands
shifting the point chiral center one carbon away was attenuated to
form diastereomers. The results clearly demonstrate the profound
influence of prepositioned point chirality in the ligand on the
origin of the consequent chirality of the formed structures. Thus, it
is evident that the chirality of aniono-supramolecular assemblies,
like the metallo-systems, may also be controlled through chiral
transcription by introducing chiral auxiliaries into the ligand.
Further exploration of the chirality issues in the anion-
coordination driven assembly (ACDA) is underway.
5 (a) N. Busschaert, C. Caltagirone, W. Van Rossom and P. A. Gale,
Chem. Rev., 2015, 115, 8038–8155; (b) C. Jia, W. Zuo, D. Yang, Y. Chen,
ˇ
L. Cao, R. Custelcean, J. Hostas, P. Hobza, R. Glaser, Y.-Y. Wang,
X.-J. Yang and B. Wu, Nat. Commun., 2017, 8, 938; (c) D. Yang, J. Zhao,
X.-J. Yang and B. Wu, Org. Chem. Front., 2018, 5, 662–690; (d) X. Bai,
C. Jia, Y. Zhao, D. Yang, S. C. Wang, A. Li, Y.-T. Chan, Y.-Y. Wang,
X.-J. Yang and B. Wu, Angew. Chem., Int. Ed., 2018, 57, 1851–1855;
(e) K. Bowman-James, Acc. Chem. Res., 2005, 38, 671–678.
6 B. Wu, F. Cui, Y. Lei, S. Li, N. D. S. Amadeu, C. Janiak, Y. J. Lin, L. H. Weng,
Y. Y. Wang and X.-J. Yang, Angew. Chem., Int. Ed., 2013, 52, 5096–5100.
7 (a) D. Yang, J. Zhao, Y. Zhao, Y. Lei, L. Cao, X.-J. Yang, M. Davi,
N. D. S. Amadeu, C. Janiak, Z. Zhang, Y. Y. Wang and B. Wu, Angew.
Chem., Int. Ed., 2015, 54, 8658–8661; (b) D. Yang, J. Zhao, L. Yu, X. Lin,
W. Zhang, H. Ma, A. Gogoll, Z. Zhang, Y. Wang, X.-J. Yang and B. Wu,
J. Am. Chem. Soc., 2017, 139, 5946–5951; (c) W. Zhang, D. Yang,
J. Zhao, L. Hou, J. L. Sessler, X.-J. Yang and B. Wu, J. Am. Chem. Soc.,
2018, 140, 5248–5256.
We are grateful for the financial support from the National
Natural Science Foundation of China (91856102 and 21772154)
and Shaan’xi Province (334041900005 and 2019JQ-723).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) J. E. Hein and D. G. Blackmond, Acc. Chem. Res., 2012, 45,
8 W. Zuo, Z. Huang, Y. Zhao, W. Xu, Z. Liu, X.-J. Yang, C. Jia and B. Wu,
Chem. Commun., 2018, 54, 7378–7381.
2045–2054; (b) M. Liu, L. Zhang and T. Wang, Chem. Rev., 2015, 9 (a) M. Wei, B. Wu, L. Zhao, H. Zhang, S. Li, Y. Zhao and X.-J. Yang, Org.
115, 7304–7397; (c) E. M. G. Jamieson, F. Modicom and S. M. Goldup,
Chem. Soc. Rev., 2018, 47, 5266–5311.
Biomol. Chem., 2012, 10, 8758–8761; (b) B. Li, B. Zheng, W. Zhang,
D. Zhang, X.-J. Yang and B. Wu, Cryst. Growth Des., 2019, 19, 6527–6533.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020