3
4
J. S. Wilkes, J. Mol. Catal. A: Chem., 2004, 214, 11–17.
K. N. Marsh, J. A. Boxall and R. Lichtenthaler, Fluid Phase
Equilib., 2004, 219, 93–98.
M. J. Muldoon, C. M. Gordon and I. R. Dunkin, J. Chem. Soc.,
Perkin Trans. 2, 2001, 433–435.
J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer,
G. A. Broker and R. D. Rogers, Green Chem., 2001, 3, 156–164.
J. Esser, P. Wasserscheid and A. Jess, Green Chem., 2004, 6,
vibrations resulting in DdOH values of about ꢀ0.02 to ꢀ0.03
(
not shown).
In contrast to the situation in the pure alcohol, the variation
5
6
7
8
9
in the measured DdOH for the mixtures levelled off in the
temperature interval from 30 1C to the CST, reaching a much
lower value of DdOH ¼ 0.30 ppm (36% lower) at CST. At
temperatures above the CST DdOH increased practically line-
arly again with essentially the same slope as for the pure
alcohol, however, with a DdOH value corresponding to a shift
of approximately 10 1C when compared to the pure alcohol.
Combined, these observations clearly demonstrated that the
alcohol intra-molecular hydrogen bonding structure was not
preserved when the alcohol dissolved in the ionic liquid-rich
phase at intermediate temperatures below the CST. Most
likely, this can be attributed to competitive hydrogen bonding
of the alcohol to the ionic liquid anion or to the polyether alkyl
groups in the ionic liquid imidazolium cation. This also
suggests that mutual phase miscibilities are accompanied by
a notable change in mobility of the conducting ionic liquid
species, as previously indicated by the complementary con-
ductivity measurements.
3
16–322.
H. Olivier-Bourbigou and L. Magna, J. Mol. Catal. A: Chem.,
002, 182–183, 419–437.
2
J. Dupont, R. F. de Souza and P. A. Z. Suarez, Chem. Rev., 2002,
102, 3667–3692.
10 A. Riisager, R. Fehrmann, S. Flicker, R. van Hal, M. Haumann
and P. Wasserscheid, Angew. Chem., Int. Ed., 2005, 44, 815–819.
C. P. Mehnert, Chem.–Eur. J., 2005, 11, 50–56.
1
1
1
2
S. V. Dzyuba and R. A. Bartsch, Angew. Chem., Int. Ed., 2003, 42,
48–150, and cited references.
1
13
14
15
A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S.
Sheff, A. Wierzbicki, J. H. Davis Jr. and R. D. Rogers, Chem.
Commun., 2001, 135–136.
J. D. Holbrey, A. E. Visser, S. K. Spear, W. M. Reichert, R. P.
Swatloski, G. A. Broker and R. D. Rogers, Green Chem., 2003, 5,
1
29–135.
A. Bosmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz and
P. Wasserscheid, Chem. Commun., 2001, 2494–2495.
¨
Conclusion
16 W. Wu, B. Han, H. Gao, Z. Liu, T. Jiang and J. Huang, Angew.
Chem., Int. Ed., 2004, 43, 2415–2417.
In this work we have demonstrated the use of conductivity
measurements as a simple technique for investigating thermo-
morphic behavior of binary ionic liquid-organic liquid systems,
exemplified by measurements on a binary methoxyethoxyethyl-
imidazolium ionic liquid/1-hexanol system. Moreover, we have
1
7
D. J. Brauer, K. W. Kottsieper, C. Liek, O. Stelzer, H. Waffensch-
midt and P. Wasserscheid, J. Organomet. Chem., 2001, 630,
177–184.
1
8
X. Zheng, J. Jiang, X. Liu and Z. Jin, Catal. Today, 1998, 44,
1
75–182.
19 J. Jiang, Y. Wang, C. Liu, F. Han and Z. Jin, J. Mol. Catal. A:
Chem., 1999, 147, 131–136.
1
shown how temperature dependent H-NMR and FT-Raman
measurements combined with the conductivity examinations
can provide (i) information about miscibility, (ii) be used as
complimentary methods for determining critical solution tem-
peratures (CSTs) as function of composition and the phase
diagram, and (iii) provide information about structural
changes occurring for the compounds upon mixing.
In perspective, we believe that the introduced conductivity
methodology can be implemented to monitor reactions in
biphasic ionic liquid catalysis, and as an analytical tool for
determining cross contamination in extraction and separation
technology based on ionic liquids. Furthermore, we envisage
that thermomorphic ionic liquid–organic liquid binary systems
may have application for important catalytic processes where
catalyst-product/reactant separation is problematic. Such
possible reactions will be explored in future work.
2
0
J. Jiang, Y. Wang, C. Liu, Q. Xiao and Z. Jin, J. Mol. Catal. A:
Chem., 2001, 171, 85–89.
21 Y. Wang, J. Jiang, Q. Miao, X. Wu and Z. Jin, Catal. Today, 2002,
4, 85–90.
P. J. Dyson, D. J. Ellis and T. Welton, Can. J. Chem., 2001, 79,
05–708.
7
2
2
3
7
2
S. B. Rasmussen, H. Hamma, O. B. Lapina, D. F. Khabibulin, K.
M. Eriksen, R. W. Berg, G. Hatem and R. Fehrmann, J. Phys.
Chem. B, 2003, 107, 13823–13830, and cited references.
24 S. N. V. K. Aki, J. F. Brennecke and A. Samanta, Chem.
Commun., 2001, 413–414.
2
5
U. Domanska and A. Marciniak, J. Phys. Chem. B, 2004, 108,
376–2382.
S. A. Katsyuba, P. J. Dyson, E. E. Vandyukova, A. V. Chernova
2
2
6
and A. Vidis, Helv. Chim. Acta, 2004, 87, 2556–2565.
27 J.-F. Huang, P.-Y. Chen, I.-W. Sun and S. P. Wang, Inorg. Chim.
Acta, 2001, 320, 7–11.
2
2
3
3
8
9
0
1
C.-T. Wu, K. N. Marsh, A. V. Deev and J. A. Boxall, J. Chem.
Eng. Data, 2003, 48, 486–491.
J. M. Crosthwaite, S. N. V. K. Aki, E. J. Maginn and J. F.
Brennecke, J. Phys. Chem. B, 2004, 108, 5113–5119.
J. Pernak, K. Sobaszkiewicz and J. Foksowicz-Flaczyk, Chem.–
Eur. J., 2004, 10, 3479–3485.
Acknowledgements
This work was supported by the ConNeCat project ‘‘Smart
ligands-smart solvents’’ financed by the German Federal Min-
istry for Education and Research (BMBF), and the Danish
Technical Research Council regarding part of the work carried
out at the Technical University of Denmark. The authors
thank Bodil Holten and Charlotte H. Gotfredsen (Department
of Chemistry, Technical University of Denmark), and Lykke
Ryelund (Department of Chemistry, University of Copenha-
gen) for technical assistance.
J. Pernak, A. Olszowka and R. Olszewski, Pol. J. Chem., 2003, 77,
179–187.
32 L. C. Branco, J. N. Rosa, J. J. Moura Ramos and C. A. M.
Afonso, Chem.–Eur. J., 2002, 8, 3671–3677.
Z.-B. Zhou, H. Matsumoto and K. Tatsumi, Chem.–Eur. J., 2004,
0, 6581–6591.
33
34
35
36
1
J. Fraga-Dubreuil, M.-H. Famelart and J. P. Bazureau, Org. Proc.
Res. Dev., 2002, 6, 374–378.
G. Jones and B. C. Bradshaw, J. Am. Chem. Soc., 1933, 55,
1
780–1800.
References
D. Brouillette, D. E. Irish, N. J. Taylor, G. Perron, M. Odziem-
kowski and J. E. Desnoyers, Phys. Chem. Chem. Phys., 2002, 4,
6063–6071.
1
C. C. Tzschucke, C. Markert, W. Bannwarth, S. Roller, A. Hebel
and R. Haag, Angew. Chem., Int. Ed., 2002, 41, 3964–4000.
Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton,
VCH-Wiley, Weinheim, 1st edn., 2003.
2
37 R. W. Berg, M. Deetlefs, K. R. Seddon, I. Shim and J. M.
Thompson, J. Phys. Chem. B, submitted.
3
058
P h y s . C h e m . C h e m . P h y s . , 2 0 0 5 , 7 , 3 0 5 2 – 3 0 5 8
T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 5