Q.-Y. Chen, C.-F. Chen / Tetrahedron Letters 45 (2004) 6493–6496
6495
Acknowledgements
We thank the Chinese Academy of Sciences, the
National Natural Science Foundation of China and
the Ministry of Science and Technology of China (No.
2002CCA03100) for financial support.
References and notes
1. (a) Comprehensive Supramolecular Chemistry; Atwood, J.
L., Davies, J. E. D., MacNicol, D. D., Vogtle, F., Lehn,
J.-M., Eds.; Elsevier: Amsterdam, 1996; (b) Supramolec-
ular Chemistry of Anions; Bianchi, A., James, K. B.,
¨
Garcia-EspanAa, E., Eds.; Wiley-VCH: New York, 1997.
2. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103,
4419–4476, and references cited therein.
Figure 4. Partial 1H NMR (300MHz) of 2 (1mM) in DMSO-d6.
(a) Compound 2 only; (b) 2+1equiv of n-Bu4N+FÀ; (c) 2+2equiv of
n-Bu4N+FÀ; (d) 2+1equiv of n-Bu4N+AcOÀ. The numbering of
protons is given in Scheme 2.
3. Some fluorescent chemosensors for FÀ and AcOÀ:
(a) Miyaji, H.; Anzenbacher, P., Jr.; Sessler, J. L.;
Bleasdale, E. R.; Gale, P. A. Chem. Commun. 1999,
1723–1724; (b) Anzenbacher, P., Jr.; Jursikova, K.;
Sessler, J. L. J. Am. Chem. Soc. 2000, 122, 9350–9351;
(c) Cooper, C. R.; Spencer, N.; James, T. D. Chem.
Commun., 1998, 1365–1366; (d) Kim, S. K.; Yoon, J.
Chem. Commun., 2002, 770–771; (e) Cho, E. J.; Moon, J.
W.; Ko, S.; Lee, J.; Kim, S. K.; Yoon, J.; Nam, K. C. J.
Am. Chem. Soc. 2003, 125, 12376–12377; (f) Lee, J. Y.;
Cho, E. J.; Mukamel, S.; Nam, K. C. J. Org. Chem. 2004,
69, 943–950; (g) Lee, D. H.; Im, J. H.; Lee, J.; Hong, J.
Tetrahedron Lett. 2002, 43, 9637–9640; (h) Zhang, X.;
Guo, L.; Wu, F.; Jiang, Y. Org. Lett. 2003, 5, 2667–2670;
(i) Chen, C. F.; Chen, Q. Y. Tetrahedron Lett. 2004, 45,
3957–3960; (j) Nishizawa, S.; Kaneda, H.; Uchida, T.;
Teramae, N. J. Chem. Soc., Perkin Trans. 2, 1998,
2325–2327.
Hg Hf
He
Hd
F-
O
AcO-
O
Hh
O
O
H
O
O
H
F-
O
AcO-
O
O
O
O
O
NH
HN
NH
HN
NH
HN
Hc
Hb
Ha
2
Scheme 2. Proposed binding mode of 2 with FÀ and AcOÀ.
has a strong hydrogen bonding interaction not only with
the protons of the amide, but also with the Hh proton
(Scheme 2). The interaction between Hh and the fluoride
ion may also be an example of Caromatic–H hydrogen
bonding. On the other hand, Hc and Hd protons at the
ortho position to carbamate group showed a significant
upfield shift (Dd=À0.95 and À0.71ppm, respectively)
upon the addition of FÀ. It implied that there is no
hydrogen bonding interaction between Hc/Hd and the
oxygen in the carbonyl groups, which would induce
the Hc/Hd proton signals to shift downfield. Moreover,
the other aromatic proton signals shifted moderate up-
field (Dd=À0.30 to À0.70ppm). These facts could be
the result of the enhanced resonance of anthracene
and phenyl electrons from anionic character of carba-
mate nitrogen and oxygen.3f In the case of the acetate,
the spectral changes of 2 and binding mode of 2 with
AcOÀ were similar to those for the fluoride, which is
consistent with the results of the above fluorescent and
chromogenic methods.
4. Suksai, C.; Tuntulani, T. Chem. Soc. Rev. 2003, 32,
192–202.
5. (a) Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int. Ed.
1999, 38, 3666–3669; (b) Black, C. B.; Andrioletti, B.; Try,
A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem. Soc. 1999,
121, 10438–10439; (c) Miyaji, H.; Sessler, J. L. Angew.
Chem., Int. Ed. 2001, 40, 154–157; (d) Yamaguchi, S.;
Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2001, 123,
11372–11375.
6. For recent reviews for anion receptors, see: (a) Choi, K.;
Hamilton, A. D. Coord. Chem. Rev. 2003, 240, 101–110;
(b) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001,
40, 486–516; (c) Antonisse, M. M. G.; Reinhoudt, D. N.
Chem. Commun., 1998, 443–448; (d) Schmidtchen, F. P.;
Berger, M. Chem. Rev. 1997, 97, 1609–1646; (e) Snowden,
T. S.; Anslyn, E. V. Curr. Opin. Chem. Biol. 1999, 3,
740–746.
7. (a) Bondy, C. R.; Loeb, S. J. Coord. Chem. Rev. 2003, 240,
77–99; (b) Amendola, V.; Fabbrizzi, L.; Mangano, C.;
Pallavicini, P.; Poggi, A.; Taglietti, A. Coord. Chem. Rev.
2001, 219, 821–837.
8. He, J. J.; Quiocho, F. A. Science 1991, 251, 1479–1481.
9. (a) Huston, M. E.; Akkaya, E. U.; Czarnik, A. W. J. Am.
Chem. Soc. 1989, 111, 8735–8737; (b) Vance, D. H.;
Czarnik, A. W. J. Am. Chem. Soc. 1994, 116, 9397–9398.
10. Gunnlaugsson, T.; Davis, A. P.; Glynn, M. Chem.
Commun., 2001, 2556–2557.
In summary, we have presented a new fluorescent as well
as chromogenic anion chemosensor 2, which showed
high sensitivity and selectivity toward FÀ and AcOÀ
over other anions including H2PO4À, ClÀ, BrÀ, IÀ, and
HSO4À. In particular, the appearance of new red-shifted
fluorescence and absorption bands in the presence of FÀ
and AcOÀ, which could be attributed to the anthracene
moiety directly involved in the hydrogen bonding inter-
action with the anions, providing a great advantage for
the detect of those anions.
11. Lu, L. G.; Chen, Q. Y.; Zhu, X. Z.; Chen, C. F. Synthesis
2003, 2464–2466.
12. Compound 2: 1H NMR (300MHz, DMSO-d6, ppm): d
10.62 (s, 2H, NH), 8.82 (s, 1H), 8.71 (s, 1H), 8.09 (d,
J=8.5Hz, 2H), 7.61 (dd, J=7.4, 8.5Hz, 2H), 7.45–7.50
(m, 6H), 7.29 (dd, J=7.4, 7.6Hz, 4H), 7.06 (t, J=7.4Hz,
2H); 13C NMR (75MHz, DMSO-d6, ppm): d 151.8, 146.1,