F. D’Anna et al. / Tetrahedron 64 (2008) 672e680
679
temperature controller, able to keep the temperature constant
Supplementary data
within 0.1 K. Kinetic runs were carried out over the tempera-
ture range 293e313 K. The sample for a typical kinetic run
was prepared by mixing the proper RTIL, co-solvent and sub-
strate solution into a quartz cuvette (optical path 0.2 cm). The
solution obtained was thermostated, the proper volume of Pip
solution (at six concentrations) added and the reaction rates
measured by the disappearance of 1 at its lMAX. The concen-
tration of substrate was constant and equal to 1.9ꢀ10ꢁ4 M; the
amine concentration ranged from 2.2 M to 17ꢀ10ꢁ3 M. The
course of the reactions was followed over at least three half-
lives. Kinetic data were analyzed by means of the Kaleida-
Graph 3.0.1 software. The apparent first-order rate constants
obtained were reproducible within ꢂ3%.
Supplementary data associated with this article can be
References and notes
1. (a) Welton, T. Chem. Rev. 1999, 99, 2071e2083; (b) Wasserscheid, P.;
Keim, M. Angew. Chem., Int. Ed. 2000, 39, 3772e3789; (c) Rogers,
R. D.; Seddon, K. R. Ionic Liquids: Industrial Application to Green Che-
mistry. ACS Symposium Series 818; American Chemical Society:
Washington, DC, 2002; (d) Rogers, R. D.; Seddon, K. R. Ionic Liquids
as Green Solvents. Progress and Prospects. ACS Symposium Series
856; American Chemical Society: Washington, DC, 2003; (e) Rogers,
R. D.; Seddon, K. R.; Volkov, S. Green Industrial Application of Ionic Liq-
uids. NATO Science Series II. Mathematics, Physics and Chemistry;
Kluwer: Dordrecht, 2003; Vol. 92; (f) Ionic Liquids in Synthesis; Was-
serscheid, P., Welton, T., Eds.; Wiley-VCH: Weinheim, 2003; (g) Chiappe,
C.; Pieraccini, D. J. Phys. Org. Chem. 2005, 18, 275e297; (h) Rogers,
R. D.; Seddon, K. R. Ionic Liquids III A: Fundamentals, Progress, Chal-
lenges and Opportunities. ACS Symposium Series 901; American Chem-
ical Society: Washington, DC, 2005; (i) Harper, J. B.; Kobrak, M. N. Mini-
Rev. Org. Chem. 2006, 3, 253e269.
4.3. Fluorescence spectra
Steady-state fluorescence spectra were acquired using
a quartz cuvette (optical path 0.2 cm). The pyrene concentra-
tion was 2ꢀ10ꢁ7 M. Excitation and emission slits were set at
1.5 nm and the excitation wavelength was set to 337 nm. Spec-
tra were recorded in the range 360e450 nm. Each spectrum
was averaged over 50 scans.
2. (a) Sheldon, R. Chem. Commun. 2001, 2399e2407; (b) Lancaster, N. L.;
Welton, T.; Young, G. B. J. Chem. Soc., Perkin Trans. 2 2001, 2267e
2270; (c) Chiappe, C.; Conte, V.; Pieraccini, D. Eur. J. Org. Chem.
2002, 2831e2837; (d) Lancaster, N. L.; Salter, P. A.; Welton, T.; Young,
G. B. J. Org. Chem. 2002, 67, 8855e8861; (e) Chiappe, C.; Pieraccini, D.;
Saullo, P. J. Org. Chem. 2003, 68, 6710e6715; (f) Chiappe, C.; Pieraccini,
D. J. Org. Chem. 2004, 69, 6059e6064; (g) Akiyama, T.; Suzuki, A.;
Fuchibe, K. Synlett 2005, 1024e1026; (h) Ranu, B. C.; Jana, R. J. Org.
Chem. 2005, 70, 8621e8624; (i) Conte, V.; Floris, B.; Galloni, P.;
Mirruzzo, V.; Scarso, A.; Sordi, D.; Strukul, G. Green Chem. 2005, 7,
262e266; (j) Laali, K. K.; Sarca, V. D.; Okazaki, T.; Brock, A.; Der, P.
Org. Biomol. Chem. 2005, 3, 1034e1042; (k) Man, B. Y. W.; Hook,
4.4. UVevis spectra
The Nile Red concentration, for UVevis spectra, was equal
to 5ꢀ10ꢁ5 M.
´
J. M.; Harper, J. B. Tetrahedron Lett. 2005, 46, 7641e7645; (l) Linden,
A. A.; Johansson, M.; Hermanns, N.; Backvall, J.-E. J. Org. Chem.
¨
4.5. Conductivity measurements
2006, 71, 3849e3853; (m) Zhao, X.; Alper, H.; Yu, Z. J. Org. Chem.
2006, 71, 3988e3990; (n) Chiappe, C.; Piccioli, P.; Pieraccini, D. Green
Chem. 2006, 8, 277e281; (o) Yoshino, T.; Imori, S.; Togo, H. Tetrahedron
2006, 62, 1309e1317; (p) D’Anna, F.; Frenna, V.; Pace, V.; Noto, R.
Tetrahedron 2006, 62, 1690e1698.
Conductivity measurements were carried out by using
a conductimeter equipped with a temperature controller. The
commercial platinum electrode was calibrated at 298 K by us-
ing 1 mol/L aqueous KCl solution.
3. (a) Dupont, J. J. Braz. Chem. 2004, 15, 341e350; (b) Antonietti, M.;
Kuang, D.; Smarsly, B.; Zhou, Y. Angew. Chem., Int. Ed. 2004, 43,
4988e4992.
4. (a) Skrzypczak, A.; Neta, P. Int. J. Chem. Kinet. 2004, 36, 253e258; (b)
1
4.6. H NMR measurements
´
Crowhurst, L.; Lancaster, N. L.; Perez Arlandis, J. M.; Welton, T. J. Am.
Chem. Soc. 2004, 126, 11549e11555; (c) Lancaster, N. L.; Welton, T.
J. Org. Chem. 2004, 69, 5986e5992; (d) Lancaster, N. L. J. Chem. Res.
2005, 413e417; (e) Crowhurst, L.; Falcone, R.; Lancaster, N. L.;
Llopis-Mestre, V.; Welton, T. J. Org. Chem. 2006, 71, 8847e8853.
5. Dupont, J.; Suarez, P. A. Z. Phys. Chem. Chem. Phys. 2006, 8, 2441e
2452.
NMR spectra were collected on a 250 MHz spectrometer.
In NMR measurements suitable volumes of RTIL and co-sol-
vent were mixed in a 5 mm NMR tube. A steam coaxial cap-
illary tube loaded with DMSO-d6 was used for the external
lock of the NMR magnetic field/frequency and its signal was
6. (a) Harifi-Mood, A. R.; Habibi-Yangjeh, A.; Gholami, M. R. J. Phys.
Chem. B 2006, 110, 7073e7078; (b) Mellein, B. R.; Aki, S. N. V. K.;
Ladewski, R. L.; Brennecke, J. F. J. Phys. Chem. B 2007, 111, 131e138;
(c) Headley, A. D.; Saibabu Kotti, S. R. S.; Ni, B. Heterocycles 2007, 71,
589e596.
1
used as the H NMR external reference at 2.56 ppm.
Acknowledgements
7. Reichardt, C. Solvents and Solvent Effect in Organic Chemistry; Wiley-
VCH: Weinheim, 2003.
8. (a) Boulton, A. J.; Katritzky, A. R.; Hamid, A. J. Chem. Soc. C 1967,
2005e2007; (b) Boulton, A. J. Lectures in Heterocyclic Chemistry; Hetero
Corporation: Provo, UT, July 1973; (c) Spinelli, D.; Corrao, A.; Frenna,
V.; Vivona, N.; Ruccia, M.; Cusmano, G. J. Heterocycl. Chem. 1976,
13, 357e360; (d) Frenna, V.; Vivona, N.; Consiglio, G.; Spinelli, D.
J. Chem. Soc., Perkin Trans. 2 1983, 1199e1202; (e) D’Anna, F.; Frenna,
We thank MIUR (PRIN 2005034305 and 20066034372)
and the Universities of Bologna and Palermo for financial sup-
port. Dr. Marco Cascino and Prof. Vincenzo Turco Liveri are
gratefully acknowledged for their support in H NMR and
conductivity measurements, respectively.
1