10.1002/ejic.201700815
European Journal of Inorganic Chemistry
FULL PAPER
= 2860-2950 (m, C-H), 1573 (s, C=O), 1173 cm-1 (s, P=O); elemental
analysis calcd (%) for C54H78O7PTb: C 63.02, H 7.64; found C 62.67, H
7.27. [Gd2(tmh)6]: IR (ATR) ꢀ = 2860-2950 (m, C-H), 1572 (s, C=O);
elemental analysis calcd (%) for C66H114Gd2O12: C 56.06, H 8.13; found C
55.89, H 8.15.
Leading Graduate Schools (Hokkaido University “Ambitious
Leader’s Program”). Part of computations were performed using
the computer facilities at Reserch Center for Computational
Science (RCCS), Okazaki, Japan.
Crystallography: Single crystals of the lanthanide complexes were
mounted on micromesh (MiTeGen M3-L19-25L) using paraffin oil. All
measurements were carried out using a Rigaku R-AXIS RAPID imaging
plate area detector with graphite monochromated MoKα radiation. Non-
hydrogen atoms were refined anisotropically. All calculations were
performed using a crystal-structure crystallographic software package.
The quality of CIF data was validated by using the checkCIF/PLATON
service. Crystallographic data of the TbIII complexes and Gd complex
were summarized in Table S9. The CIF data are presented in supporting
information, and also CCDC 1507470 (Eu-1), CCDC 1507471 (Eu-2),
CCDC 1507472 (Eu-3), CCDC 1515208 (Tb-1), CCDC 1515209 (Tb-2),
CCDC 1515210 (Tb-3), and CCDC-1520661 ([Gd(tmh)3(MeOH)2])
contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.
Keywords: Lanthanides • Luminescence • Charge transfer •
Structure elucidation • Density functional calculations
[1]
[2]
[3]
C. E. Powell, M. G. Humphrey, Coord. Chem. Rev. 2004, 248, 725–756.
P. G. Lacroix, Chem. Mater. 2001, 13, 3495–3506.
A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S.
Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, et al., J. Am.
Chem. Soc. 2003, 125, 12971–12979.
[4]
R. C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250,
2093–2126.
[5]
[6]
S. V Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev. 2010, 39, 189–227.
E. Baggaley, S. W. Botchway, J. W. Haycock, H. Morris, I. V.
Sazanovich, J. a. G. Williams, J. a. Weinstein, Chem. Sci. 2014, 5, 879.
A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von
Zelewsky, Coord. Chem. Rev. 1988, 84, 85–277.
[7]
Optical measurements: Emission and excitation spectra of the
[8]
P. J. Hay, J. Phys. Chem. A 2002, 106, 1634–1641.
synthesized complexes were measured with
a spectrofluorometer
[9]
H. Ito, T. Saito, N. Oshima, N. Kitamura, S. Ishizaka, Y. Hinatsu, M.
Wakeshima, M Kato, K. Tsuge, M. Sawamura, J. Am. Chem. Soc. 2008,
130, 10044–10045.
(HORIBA Fluorolog-3). Emission quantum yields were obtained using a
spectrofluorometer (JASCO FP-6300) equipped with an integrating
sphere unit (JASCO ILF-533). The wavelength dependency of the
detector response and the beam intensity of the Xe light source for each
[10] K. Li, G. S. Ming Tong, Q. Wan, G. Cheng, W.-Y. Tong, W.-H. Ang, W.-L.
Kwong, C.-M. Che, Chem. Sci. 2016, 7, 1653–1673.
spectrum were calibrated using
a standard light source. Emission
[11] Y. Hasegawa, Y. Wada, S. Yanagida, J. Photochem. Photobiol. C
Photochem. Rev. 2004, 5, 183–202.
lifetimes were measured using the third harmonics (355 nm) of a Q-
switched Nd:YAG laser (Spectra-Physics, INDI-50, fwhm = 5 ns, λ = 1064
nm) and a photomultiplier (Hamamatsu Photonics, R5108, response time
≤ 1.1 ns). The Nd:YAG laser response was monitored with a digital
oscilloscope (Sony Tektonix, TDS3052, 500 MHz) synchronized to single-
pulse excitation. Emission lifetimes were determined from the slopes of
logarithmic plots of decay profiles. Emission lifetimes and emission
spectra in the range of 100-400 K were measured using a cryostat
(Thermal Block Company, SA-SB245T) and a temperature controller
(Oxford Instruments, ITC 502S). Diffuse reflection spectra were obtained
using a JASCO V-670 spectrophotometer with an ISN-723 integrating
sphere unit.
[12] Y. Hasegawa, Bull. Chem. Soc. Jpn. 2014, 87, 1029-1057.
[13] S. Petoud, S. M. Cohen, J. C. G. Bünzli, K. N. Raymond, J. Am. Chem.
Soc. 2003, 125, 13324–13325.
[14] K. Binnemans, Chem. Rev. 2009, 109, 4283–4374.
[15] L. D. Carlos, R. a S. Ferreira, V. de Zea Bermudez, B. Julián-López, P.
Escribano, Chem. Soc. Rev. 2011, 40, 536–549.
[16] D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, J. A. K. Howard,
Chem. Rev. 2002, 102, 1977–2010.
[17] G. M. Davies, S. J. A. Pope, H. Adams, S. Faulkner, M. D. Ward, Inorg.
Chem. 2005, 44, 4656–4665.
[18] A. Beeby, S. W. Botchway, I. M. Clarkson, S. Faulkner, A. W. Parker, D.
Parker, J. A. Williams, J. Photochem. Photobiol. B. 2000, 57, 83–89.
[19] K. Miyata, Y. Hasegawa, Y. Kuramochi, T. Nakagawa, T. Yokoo, T.
Kawai, Eur. J. Inorg. Chem. 2009, 32, 4777–4785.
Computational details: All calculations were performed with the
Gaussian 09 program.[33] The structures of three types of the seven-
coordinate EuIII complexes were optimized in the gas phase at the
B3LYP-D3[34,35] level. Excited-state calculations of these complexes at
the optimized structures were performed by TD-DFT calculations with the
LC-BLYP functional.[36-38] The Stuttgart RECP[39] and cc-pVDZ[40] basis
sets for Eu and the other atoms, respectively, were adopted for all
calculations. The assignments of molecular orbitals were performed by
the AOMix program.[41-42] Mulliken charges of the EuIII complexes were
estimated by Hartree-Fock calculation with SDD(for Eu) and 3-21g(for
other atoms) basis set.
[20] K. Miyata, T. Nakagawa, R. Kawakami, Y. Kita, K. Sugimoto, T.
Nakashima, T. Harada, T. Kawai, Y. Hasegawa, Chemistry 2011, 17,
521–528.
[21] K. Yanagisawa, T. Nakanishi, Y. Kitagawa, T. Seki, T. Akama, M.
Kobayashi, T. Taketsugu, H. Ito, K. Fushimi, Y. Hasegawa, Eur. J. Inorg.
Chem. 2015, 2015, 4769–4774.
[22] R. Hoffmann, B. F. Beier, E. L. Muetterties, A. R. Rossi, Inorg. Chem.
1977, 16, 511–522.
[23] P. A. Tanner, Chem. Soc. Rev. 2013, 42, 5090-5101.
[24] D. E. Henrie, Coord. Chem. Rev. 1976, 18, 199–224.
[25] M. Hatanaka, S. Yabushita, J. Phys. Chem. A 2009, 113, 12615–12625.
[26] J. Xu, E. Radkov, M. Ziegler, K. N. Raymond, Inorg. Chem. 2000, 39,
4156–4164.
Acknowledgements
[27] C. G. Warland, L. Fluvt, A. Ceulemans, W. T. Carnall, J. Chem. Phys.
1991, 95, 3099-3106.
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Area of “New Polymeric Materials
Based on Element-Blocks” from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) (Japan; grant
number 2401). K. Y. was supported by the Ministry of Education,
Culture, Sports, Science and Technology through a Program for
[28] Z. Ahmed, K. Iftikhar, Inorg. Chem. 2015, 54, 11209–11225.
[29] S. Sato, M. Wada, Bull Chem. Soc. Jpn. 1970, 43, 1955-1962.
[30] N. Sutin, Acc. Chem. Res. 1982, 15, 275-282.
[31] Y. Hasegawa, T. Ohkubo, T. Nakanishi, A. Kobayashi, M. Kato, T. Seki,
H. Ito, K. Fushimi, Eur. J. Inorg. Chem. 2013, 2013, 5911–5918.
This article is protected by copyright. All rights reserved.