pubs.acs.org/joc
been selected as objects in computational chemistry.4
Photoswitching of Dextro/Levo Rotation with
Axially Chiral Binaphthyls Linked to an Azobenzene
Moreover, reflecting their chirality, some axially chiral
binaphthyls exhibit relatively large optical rotations and
circular dichroism (CD).5 The large positive-negative-rever-
sible changes of such optical properties have been evaluated
with promising results in the development of novel photo-
switching materials. Moreover, optical rotation can be de-
tected at an unabsorbed wavelength, so target compounds
do not degrade during measurement. Hence, a switch for
dextro (positive)/levo (negative) rotation will lead to the
development of noise-cancellation, nondestructive reading
of memory devices.6c Although practical recording-repro-
duction systems have been designed by using optical rota-
tion, practical applications have yet to emerge due to the lack
of appropriate compounds.6d,e Irie, Branda, Wang, and
Yokoyama et al. have independently reported changes using
helicenoids via photochroism,7 but the CD variations are not
large or unreported and the change in optical rotations at the
sodium D-line, the universal wavelength (589 nm), does not
involve a sign inversion. Our research strives to change the
CD variations and optical rotations using axially chiral
binaphthyl derivatives.
Kazuto Takaishi,*,† Masuki Kawamoto,† Kazunori
Tsubaki,‡ and Tatsuo Wada*,†
†Supramolecular Science Laboratory, RIKEN, Hirosawa 2-1,
Wako, Saitama 351-0198, Japan, and ‡Graduate School of
Life and Environmental Science, Kyoto Prefectural
University, Shimogamo Hangi-cho, Sakyo, Kyoto 606-8522,
Japan
ktakaishi@riken.jp; tatsuow@riken.jp
Received May 18, 2009
We have reported basic compound (R)-1 (Figure 1), which
is composed of binaphthyl and azobenzene skeletons.8 Azo-
benzene skeletons are heavily used photochromic parts,9 and
show a significant change in length between the cis and trans
forms. The azobenzene moiety of (R)-1 can be reasonably
cis-trans photoisomerized. Additionally, isomerization can
be detected by the change in CD intensity, which is likely due
to the change in the dihedral angle formed by the two
naphthalene rings because the dihedral angle is related to
the CD intensity. This change is reversible, but the change is
small and sign reversal is not detected. Although we have
attempted to shorten the linkers so that the structural change
of the azobenzene moiety can be more directly transmitted to
the binaphthyl, our attempts have been unsuccessful. As an
alternative, herein we investigate whether the 3,30-substitu-
ents of the binaphthyl moiety can produce large confor-
mation changes between the cis and trans forms as well as
initiate subsequent changes in optical rotation and CD.
To examine the reversible photoisomerization and sub-
sequent change of asymmetric field, we synthesized opti-
cally active 3,30-disubstituted-1,10-binaphthyls with an
azobenzene moiety. Reflecting the structural change,
the specific rotation and circular dichroism underwent
significant variations. Under certain conditions, the po-
sitive-negative signals were reversible. Furthermore, the
magnitude of these changes showed a 3,30-substituent
dependency. Dibenzyloxy or bis(diphenylmethyloxy) de-
rivatives were better suited for sign interconversion of the
optical properties. In contrast, the hydroxy group(s)
lacked both optical signals and durability.
(5) (a) Minatti, A.; Doetz, K. H. Tetrahedron: Asymmetry 2005, 16, 3256–
3267. (b) Tsubaki, K.; Miura, M.; Morikawa, H.; Tanaka, H.; Kawabata, T.;
Furuta, T.; Tanaka, K.; Fuji, K. J. Am. Chem. Soc. 2003, 125, 16200–162001.
(c) Higuchi, H.; Ohta, E.; Kawai, H.; Fujiwara, K.; Tsuji, T.; Suzuki, T.
J. Org. Chem. 2003, 68, 6605–6610.
(6) (a) Murguly, E.; Norsten, T. B.; Brand, N. R. Angew. Chem., Int.
Ed. 2001, 40, 1752. (b) Feringa, B. L. Molecular Switches; Wiley-VCH:
Weinheim, Germany, 2001. (c) Kawata, Y.; Kawata, S. Chem. Rev. 2000,
100, 1777. (d) Yokoyama, Y.; Ubukata, T.; Saito, M. JP Patent 224834, 2008.
(e) Wada, H.; Nishino, K. JP Patent 50317, 2003.
(7) (a) Okumura, T.; Tani, Y.; Miyake, K.; Yokoyama, Y. J. Org. Chem.
2007, 72, 1634–1638. (b) Wang, Z. Y.; Todd, E. K.; Meng, X. S.; Gao, J. P. J.
Am. Chem. Soc. 2005, 127, 11552–11553. (c) Wigglesworth, T. J.; Sud, D.;
Norsten, T. B.; Lekhi, V. S.; Branda, N. R. J. Am. Chem. Soc. 2005, 127,
7272–7273. (d) Irie, M. Chem. Rev. 2000, 100, 1685-1716 and references
cited therein.
Axially chiral binaphthyls have a wide, flexible asym-
metric field. Hence, they have been extensively used in
catalytic asymmetric syntheses,1 specific molecular recogni-
tion,2 and helical twisting of liquid crystallines,3 and have
(1) (a) Fraile, J. M.; Garcia, J. I.; Mayoral, J. A. Chem. Rev. 2009, 109,
360–417. (b) Yamamoto, H.; Abel, J. P. J. Am. Chem. Soc. 2008, 130,
10521–10523. (c) Rabalakos, C.; Wulff, W. D. J. Am. Chem. Soc. 2008, 130,
13524–13525. (d) Brunel, J. M. Chem. Rev. 2005, 105, 857–898.
(2) (a) Ema, T.; Tanida, D.; Hamada, K.; Sakai, T. J. Org. Chem. 2008,
73, 9129–9132. (b) Park, H.; Nandhakumar, R.; Hong, J.; Ham, S.; Chin, J.;
Kim, K. M. Chem.;Eur. J. 2008, 14, 9935–9942. (c) Wang, Q.; Chen, X.;
Tao, L.; Wang, L.; Xiao, D.; Yu, X.-Q.; Pu, L. J. Org. Chem. 2007, 72,
97–101.
(3) (a) Yoshizawa, A.; Kobayashi, K.; Sato, M. Chem. Commun. 2007,
257–259. (b) Akagi, K.; Guo, S.; Mori, T.; Goh, M.; Piao, G.; Kyotan, M. J.
Am. Chem. Soc. 2005, 127, 14647–14654.
(4) (a) Kamberaj, H.; Low, R. J.; Neal, M. P. Mol. Phys. 2006, 104,
335–357. (b) Kranz, M.; Clark, T.; Schleyer, P. v. R. J. Org. Chem. 1993, 58,
3317–3325.
(8) Kawamoto, M.; Aoki, T.; Wada, T. Chem. Commun. 2007, 930–932.
(9) (a) Tamaoki, N.; Mathews, M. J. Am. Chem. Soc. 2008, 130, 11409–
11416. (b) Dri, C.; Peters, M. V.; Schwarz, J.; Hecht, S.; Grill, L. Nature
Nanotechnol. 2008, 3, 649–653. (c) Muraoka, T.; Kinbara, K.; Aida, T.
Nature 2006, 440, 512–515. (d) an Delden, R. A.; Mecca, T.; Rosini, C.;
Feringa, B. L. Chem.;Eur. J. 2004, 10, 61–70.
DOI: 10.1021/jo901030s
r
Published on Web 06/09/2009
J. Org. Chem. 2009, 74, 5723–5726 5723
2009 American Chemical Society