Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 9 3463
rabbits with 1,25 (OH)2D3, as previously described,40 and
Western blotted as described above.
(7) (a) Pereira-Leal, J. B.; Seabra, M. C. The mammalian Rab family
of small GTPases: definition of family and subfamily sequence
motifs suggests a mechanism for functional specificity in the Ras
superfamily. J. Mol. Biol. 2000, 301, 1077–1087. (b) Leung, K. F.;
Baron, R.; Seabra, M. C. Geranylgeranylation of Rab GTPases. J. Lipid
Res. 2006, 47, 467–475.
(8) Marma, M. S.; Xia, Z. D.; Stewart, C.; Coxon, F.; Dunford, J. E.;
Baron, R.; Kashemirov, B. A.; Ebetino, F. H.; Triffitt, J. T.;
Russell, R. G. G.; McKenna, C. E. Synthesis and biological
evaluation of alpha-halogenated bisphosphonate and phosphono-
carboxylate analogues of risedronate. J. Med. Chem. 2007, 50,
5967–5975.
(9) Blazewska, K. M.; Kashemirov, B. A.; Stewart, C. A.; Coxon,
F. P.; Baron, R.; Rogers, M. J.; Seabra, M. C.; Ebetino, F. H.;
McKenna, C. E. 42nd Western Regional Meeting of the American
Chemical Society, Las Vegas, NV, Sept 23-27, 2008; Abstract
WRM-070.
(10) (a) Cheng, K. W.; Lahad, J. P.; Kuo, W. L.; Lapuk, A.; Yamada,
K.; Auersperg, N.; Liu, J. S.; Smith-McCune, K.; Lu, K. H.;
Fishman, D.; Gray, J. W.; Mills, G. B. The RAB25 small GTPase
determines aggressiveness of ovarian and breast cancers. Nat. Med.
2004, 10, 1251–1256. (b) Gebhardt, C.; Breitenbach, U.; Richter, K. H.;
Furstenberger, G.; Mauch, C.; Angel, P.; Hess, J. C-fos-dependent
induction of the small ras-related GTPase Rab11a in skin carcinogen-
esis. Am. J. Pathol. 2005, 167, 243–253.
(11) Lackner, M. R.; Kindt, R. M.; Carroll, P. M.; Brown, K.; Cancilla,
M. R.; Chen, C. Y.; de Silva, H.; Franke, Y.; Guan, B.; Heuer, T.;
Hung, T.; Keegan, K.; Lee, J. M.; Manne, V.; O’Brien, C.; Parry,
D.; Perez-Villar, J. J.; Reddy, R. K.; Xiao, H. J.; Zhan, H. J.;
Cockett, M.; Plowman, G.; Fitzgerald, K.; Costa, M.;
Ross-Macdonald, P. Chemical genetics identifies Rab geranylger-
anyl transferase as an apoptotic target of farnesyl transferase
inhibitors. Cancer Cell 2005, 7, 325–336.
(12) (a) Watanabe, M.; Fiji, H. D. G.; Guo, L.; Chan, L.; Kinderman,
S. S.; Slamon, D. J.; Kwon, O.; Tamanoi, F. Inhibitors of protein
geranylgeranyltransferase I and Rab geranylgeranyltransferase
identified from a library of allenoate-derived compounds. J. Biol.
Chem. 2008, 283, 9571–9579. (b) Guo, Z.; Wu, Y. W.; Tan, K. T.; Bon,
R. S.; Guiu-Rozas, E.; Delon, C.; Nguyen, U. T.; Wetzel, S.; Arndt, S.;
Goody, R. S.; Blankenfeldt, W.; Alexandrov, K.; Waldmann, H.
Development of selective RabGGTase inhibitors and crystal structure
of a RabGGTase-inhibitor complex. Angew. Chem., Int. Ed. 2008, 47,
3747–3750.
(13) Boissier, S.; Ferreras, M.; Peyruchaud, O.; Magnetto, S.; Ebetino,
F. H.; Colombel, M.; Delmas, P.; Delaisse, J.-M.; Clezardin, P.
Bisphosphonates inhibit breast and prostate carcinoma cell inva-
sion, an early event in the formation of bone metastases. Cancer
Res. 2000, 60, 2949–2954.
(14) Fournier, P. G. J.; Dauhine, F.; Lundy, M. W.; Rogers, M. J.;
Ebetino, F. H.; Clezardin, P. Lowering Bone Mineral Affinity of
Bisphosphonates as a Therapeutic Strategy to Optimize Skeletal
Tumor Growth Inhibition In Vivo. Cancer Res. 2008, 68, 8945–
8953.
(15) Takeuchi, M.; Sakamoto, S.; Kawamuki, K.; Kurihara, H.;
Nakahara, H.; Isomura, Y. Studies on novel bone resorption
inhibitors. II. Synthesis and pharmacological activities of fused
aza-heteroarylbisphosphonate derivatives. Chem. Pharm. Bull.
1998, 46, 1703–1709.
(16) (a) Kashemirov, B. A.; Marma, M. S.; Mallard, I.; Ebetino, F. H.;
Coxon, F. P.; Rojas, J.; Rogers, M. J.; McKenna, C. E. 16th
International Conference on Phosphorus Chemistry, Birmingham,
UK, July 4-9, 2004; Abstract PS2-041. (b) Bala, J.; Mallard, I.;
Kashemirov, B. A.; Coxon, F. P.; Rogers, M J.; Ebetino, F. H.;
McKenna, C. E. 40th Western Regional Meeting of the American
Chemical Society, Anaheim, CA USA, Jan. 22-25 2006; Abstract
WRM-129.
(17) Baron, R. A.; Tavare, R.; Figueiredo, A. C.; Blazewska, K. M.;
Kashemirov, B. A.; McKenna, C. E.; Ebetino, F. H.; Taylor, A.;
Rogers, M. J.; Coxon, F. P.; Seabra, M. C. Phosphonocarboxylates
Inhibit the Second Geranylgeranyl Addition by Rab Geranylger-
anyl Transferase. J. Biol. Chem. 2009, 284, 6861–6868.
(18) Ebetino, F. H.; Bayless, A. V.; Dansereau, S. M. Phosphonocar-
boxylate compounds pharmaceutical compositions, and methods
for treating abnormal calcium and phosphate metabolism. U.S.
Patent 5,760,021, 1998.
Acknowledgment. This research was supported by Procter
& Gamble Pharmaceuticals, Inc. C. E. McKenna was a
consultant for Procter & Gamble Pharmaceuticals, Inc. to
12/2008, during which period some of this work was done.
_
K. M. Bzazewska was a 2007-9 WiSE Fellow.
Supporting Information Available: NMR spectra of 1, 3, and
6-15; HPLC traces for the 1 and 3 enantiomer separations;
pH dependence of 3 UV spectrum; synthetic and chiral HPLC
separation details for 13-15; stability of 13 to racemization;
RGGT inhibition curves for isolated 3-E1 and E2 adducts.
This material is available free of charge via the Internet at
References
(1) (a) Ling, Y.; Sahota, G.; Odeh, S.; Chan, J. M. W.; Araujo, F. G.;
Moreno, S. N. J.; Oldfield, E. Bisphosphonate inhibitors of Tox-
oplasma gondi growth: In vitro, QSAR, and in vivo investigations.
J. Med. Chem. 2005, 48, 3130–3140. (b) Papapoulos, S. E. Bispho-
sphonate actions: physical chemistry revisited. Bone 2006, 38, 613–
616. (c) Ling, Y.; Li, Z. H.; Miranda, K.; Oldfield, E.; Moreno, S. N. J.
The farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of
Toxoplasma gondii is a bifunctional enzyme and a molecular target
of bisphosphonates. J. Biol. Chem. 2007, 282, 30804–30816. (d)
Kotsikorou, E.; Song, Y. C.; Chan, J. M. W.; Faelens, S.; Tovian, Z.;
Broderick, E.; Bakalara, N.; Docampo, R.; Oldfield, E. Bisphosphonate
inhibition of the exopolyphosphatase activity of the Trypanosoma
brucei soluble vacuolar pyrophosphatase. J. Med. Chem. 2005, 48,
6128–6139. (e) Zhang, Y.; Leon, A.; Song, Y.; Studer, D.; Haase, C.;
Koscielski, L. A.; Oldfield, E. Activity of nitrogen-containing and non-
nitrogen-containing bisphosphonates on tumor cell lines. J. Med.
Chem. 2006, 49, 5804–5814. (f ) Roelofs, A. J.; Thompson, K.; Gordon,
S.; Rogers, M. J. Molecular mechanisms of action of bisphosphonates:
current status. Clin. Cancer Res. 2006, 12, 6222S–6230S. (g) Russell,
R. G. G.; Watts, N. B.; Ebetino, F. H.; Rogers, M. J. Mechanisms of
action of bisphosphonates: similarities and differences and their poten-
tial influence on clinical efficacy. Osteoporosis Int. 2008, 19, 733–759.
(h) Dunford, J. E.; Kwaasi, A. A.; Rogers, M. J.; Barnett, B. L.; Ebetino,
F. H.; Russell, R. G. G.; Oppermann, U.; Kavanagh, K. L. Structure-
activity relationships among the nitrogen containing bisphosphonates in
clinical use and other analogues: time-dependent inhibition of human
farnesyl pyrophosphate synthase. J. Med. Chem. 2008, 51, 2187–2195.
(i) Nancollas, G. H.; Tang, R.; Phipps, R. J.; Henneman, Z.; Gulde, S.;
Wu, W.; Mangood, A.; Russell, R. G. G.; Ebetino, F. H. Novel insights
into actions of bisphosphonates on bone: differences in interactions with
hydroxyapatite. Bone 2006, 38, 617–627. (j) Peng, Z.-Y.; Mansour,
J. M.; Araujo, F.; Ju, J.-Y.; McKenna, C. E.; Mansour, T. E. Some
phosphonic acid analogs as inhibitors of pyrophosphate-dependent
phosphofructokinase, a novel target in Toxoplasma gondii. Biochem.
Pharm. 1995, 49, 105–113.
(2) Russell, R. G. G.; Xia, Z.; Dunford, J. E.; Oppermann, U.; Kwaasi,
A.; Hulley, P. A.; Kavanagh, K. L.; Triffitt, J. T.; Lundy, M. W.;
Phipps, R. J.; Barnett, B. L.; Coxon, F. P.; Rogers, M. J.; Watts,
N. B.; Ebetino, F. H. Bisphosphonates-an update on mechanisms
of action and how these relate to clinical efficacy. Skeletal Biol.
Med., Part B 2007, 1117, 209–257.
(3) Coxon, F. P.; Helfrich, M. H.; Larijani, B.; Muzylak, M.; Dunford,
J. E.; Marshall, D.; McKinnon, A. D.; Nesbitt, S. A.; Horton,
M. A.; Seabra, M. C.; Ebetino, F. H.; Rogers, M. J. Identification
of a novel phosphonocarboxylate inhibitor of Rab geranylgeranyl
transferase that specifically prevents Rab prenylation in osteoclasts
and macrophages. J. Biol. Chem. 2001, 276, 48213–48222.
(4) Roelofs, A. J.; Hulley, P. A.; Meijer, A.; Ebetino, F. H.; Graham,
R.; Russell, G.; Shipman, C. M. Selective inhibition of Rab
prenylation by a phosphonocarboxylate analogue of risedronate
induces apoptosis, but not S-phase arrest, in human myeloma cells.
Int. J. Cancer 2006, 119, 1254–1261.
(5) Coxon, F. P.; Ebetino, F. H.; Mules, E. H.; Seabra, M. C.;
McKenna, C. E.; Rogers, M. J. Phosphonocarboxylate inhibitors
of Rab geranylgeranyl transferase disrupt the prenylation and
membrane localization of Rab proteins in osteoclasts in vitro and
in vivo. Bone 2005, 37, 349–358.
(19) Almirante, L; Mugnaini, A.; Detoma, N.; Gamba, A.; Murmann,
W.; Hidalgo, J. Imidazole Derivatives. 4. Synthesis and Pharma-
cologic Activity of Oxygenated Derivatives of Imidazo [1,2-a]-
Pyridine. J. Med. Chem. 1970, 13, 1048–1051.
(6) Cheng, K. W.; Lahad, J. P.; Gray, J. W.; Mills, G. B. Emerging role
of RAB GTPases in cancer and human disease. Cancer Res. 2005,
65, 2516–2519.
(20) Gueiffier, A.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.; Andrei,
G.; Chavignon, O.; Teulade, J. C.; Kerbal, A.; Essassi, E. M.;
Debouzy, J. C.; Witvrouw, M.; Blache, Y.; Balzarini, J.; DeClercq,