Communication
ChemComm
´
10 S. Pittolo, X. Gomez-Santacana, K. Eckelt, X. Rovira, J. Dalton,
C. Goudet, J. P. Pin, A. Llobet, J. Giraldo, A. Llebaria and
P. Gorostiza, Nat. Chem. Biol., 2014, 10, 813–815.
showed a smaller loss of original activity. For Azo-2, the
azologization involved a more peripheral region of the pharma-
cophore, while it did not affect the hydroxamic acid (i.e., the
zinc binding domain). This substitution resulted in a less
distinct difference between photoisomers.
11 N. J. Hauwert, T. A. M. Mocking, D. Da Costa Pereira, K. Lion,
Y. Huppelschoten, H. F. Vischer, I. J. P. De Esch, M. Wijtmans and
R. Leurs, Angew. Chem., Int. Ed., 2019, 58, 4531–4535.
12 R. Siewertsen, H. Neumann, B. Buchheim-Stehn, R. Herges,
In conclusion, we show here that BAS are promising cisoid
azosteres for photopharmacology. While guidelines for transoid
azosteres have been described and applied,4,33 the definition of
criteria for the rational design of cis-on photoswitchable
ligands is still lacking. To explore the requirements for mole-
cular similarity with cis-azobenzene, we have analyzed the
geometrical and electrostatic properties of two-atom-linked
biaryl systems and selected the BAS motif based on its bent
geometry and favorable dipole moment. We have demonstrated
that biaryl sulfonamides are promising azosteres if they
are considered for their preferred cisoid geometry, rather than
being discarded for their poor similarity to trans-azobenzene.33
Since biaryl sulfonamides are common motifs in numerous
ligands (see ESI,† Table S3) for various biological targets (e.g.,
anti-apoptotic protein MCL-134 and bromodomain-containing
protein 435), we believe that they may provide a rich source of
inspiration for photopharmacology. Azologization of cisoid
substructures has the potential to guide the rational design of
cis-on photoswitchable ligands.
¨
C. Nather, F. Renth and F. Temps, J. Am. Chem. Soc., 2009, 131,
15594–15595.
¨
13 J. B. Trads, K. Hu¨ll, B. S. Matsuura, L. Laprell, T. Fehrentz, N. Gorldt,
¨
K. A. Kozek, C. D. Weaver, N. Klocker, D. M. Barber and D. Trauner,
Angew. Chem., Int. Ed., 2019, 58, 15421–15428.
14 S. Li, N. Eleya and A. Staubitz, Org. Lett., 2020, 22, 1624–1627.
15 M. Borowiak, W. Nahaboo, M. Reynders, K. Nekolla, P. Jalinot,
J. Hasserodt, M. Rehberg, M. Delattre, S. Zahler, A. Vollmar,
D. Trauner and O. Thorn-Seshold, Cell, 2015, 162, 403–411.
16 M. W. H. Hoorens, M. E. Ourailidou, T. Rodat, P. E. van der
Wouden, P. Kobauri, M. Kriegs, C. Peifer, B. L. Feringa,
F. J. Dekker and W. Szymanski, Eur. J. Med. Chem., 2019, 179,
133–146.
17 K. A. Brameld, B. Kuhn, D. C. Reuter and M. Stahl, J. Chem. Inf.
Model., 2008, 48, 1–24.
18 G. Schwertz, M. S. Frei, M. C. Witschel, M. Rottmann,
U. Leartsakulpanich, P. Chitnumsub, A. Jaruwat, W. Ittarat,
¨
A. Schafer, R. A. Aponte, N. Trapp, K. Mark, P. Chaiyen and
F. Diederich, Chem. – Eur. J., 2017, 23, 14345–14357.
19 Y. Zheng, C. M. Tice and S. B. Singh, Bioorg. Med. Chem. Lett., 2017,
27, 2825–2837.
20 E. A. Ilardi, E. Vitaku and J. T. Njardarson, J. Med. Chem., 2014, 57,
2832–2842.
21 Q. Liu, F. Huang, X. Yuan, K. Wang, Y. Zou, J. Shen and Y. Xu, J. Med.
Chem., 2017, 60, 10231–10244.
Financial support from the EU Horizon 2020 program
(ALERT co-fund No. 713482 for B. L. F.) and the Dutch Scientific
Organization (VIDI grant nr. 723.014.001 for W. S., VIDI grant
nr. 723.015.004 for M. D. W.) is kindly acknowledged. P. K.
acknowledges dr. Romain Costil and Isabel Sieders (University
of Groningen) for fruitful discussions, and the Center for
Information Technology of the University of Groningen for
their support and for providing access to the Peregrine HPC
cluster.
22 F. Huang, K. Wang and J. Shen, Med. Res. Rev., 2020, 40, 79–134.
23 P. W. Finn, M. Bandara, C. Butcher, A. Finn, R. Hollinshead,
N. Khan, N. Law, S. Murthy, R. Romero, C. Watkins, V. Andrianov,
R. M. Bokaldere, K. Dikovska, V. Gailite, E. Loza, I. Piskunova,
I. Starchenkov, M. Vorona and I. Kalvinsh, Helv. Chim. Acta, 2005,
88, 1630–1657.
24 M. Mottamal, S. Zheng, T. L. Huang and G. Wang, Molecules, 2015,
20, 3898–3941.
25 P. Canning, B. A. Kenny, V. Prise, J. Glenn, M. H. Sarker, N. Hudson,
M. Brandt, F. J. Lopez, D. Gale, P. J. Luthert, P. Adamson,
P. Turowski and A. W. Stitt, Proc. Natl. Acad. Sci. U. S. A., 2016,
113, 7213–7218.
26 U. Samanta and B. J. Bahnson, J. Biol. Chem., 2008, 283,
31617–31624.
27 W. Sherman, T. Day, M. P. Jacobson, R. A. Friesner and R. Farid,
J. Med. Chem., 2006, 49, 534–553.
28 W. Szymanski, M. E. Ourailidou, W. A. Velema, F. J. Dekker and
B. L. Feringa, Chem. – Eur. J., 2015, 21, 16517–16524.
29 F. Huang, H. Hu, K. Wang, C. Peng, W. Xu, Y. Zhang, J. Gao, Y. Liu,
H. Zhou, R. Huang, M. Li, J. Shen and Y. Xu, J. Med. Chem., 2020, 63,
7052–7065.
30 B. E. L. Lauffer, R. Mintzer, R. Fong, S. Mukund, C. Tam,
I. Zilberleyb, B. Flicke, A. Ritscher, G. Fedorowicz, R. Vallero,
D. F. Ortwine, J. Gunzner, Z. Modrusan, L. Neumann, C. M. Koth,
J. S. Kaminker, C. E. Heise and P. Steiner, J. Biol. Chem., 2013, 288,
26926–26943.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 W. A. Velema, W. Szymanski and B. L. Feringa, J. Am. Chem. Soc.,
2014, 136, 2178–2191.
2 M. M. Lerch, M. J. Hansen, G. M. van Dam, W. Szymanski and
B. L. Feringa, Angew. Chem., Int. Ed., 2016, 55, 10978–10999.
3 M. W. H. Hoorens and W. Szymanski, Trends Biochem. Sci., 2018, 43,
567–575.
31 Y. Hai and D. W. Christianson, Nat. Chem. Biol., 2016, 12, 741–747.
32 H. Y. Lee, C. Y. Chang, C. J. Su, H. L. Huang, S. Mehndiratta,
Y. H. Chao, C. M. Hsu, S. Kumar, T. Y. Sung, Y. Z. Huang, Y. H. Li,
C. R. Yang and J. P. Liou, Eur. J. Med. Chem., 2016, 122, 92–101.
33 J. Morstein, M. Awale, J. L. Reymond and D. Trauner, ACS Cent. Sci.,
2019, 5, 607–618.
4 J. Broichhagen, J. A. Frank and D. Trauner, Acc. Chem. Res., 2015, 48,
1947–1960.
5 B. L. Feringa and W. R. Browne, Molecular Switches, Wiley-VCH,
Weinheim, Germany, 2011.
6 A. A. Beharry and G. A. Woolley, Chem. Soc. Rev., 2011, 40,
4422–4437.
34 B. Follows, S. Fessler, T. Baumeister, A. M. Campbell,
M. M. Zablocki, H. Li, D. Gotur, Z. Wang, X. Zheng, L. Molz,
C. Nguyen, T. Herbertz, L. Wang and K. Bair, Bioorg. Med. Chem.
Lett., 2019, 29, 2375–2382.
7 M. Schoenberger, A. Damijonaitis, Z. Zhang, D. Nagel and
D. Trauner, ACS Chem. Neurosci., 2014, 5, 514–518.
8 I. M. Welleman, M. W. H. Hoorens, B. L. Feringa, H. H. Boersma and
´
W. Szymanski, Chem. Sci., 2020, 11, 11672–11691.
¨
9 C. Matera, A. M. J. Gomila, N. Camarero, M. Libergoli, C. Soler and 35 B. K. Allen, S. Mehta, S. W. J. Ember, J. Y. Zhu, E. Schonbrunn,
P. Gorostiza, J. Am. Chem. Soc., 2018, 140, 15764–15773.
N. G. Ayad and S. C. Schu¨rer, ACS Omega, 2017, 2, 4760–4771.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 4126–4129 | 4129