MECHANISM OF OXIDATION OF ALANINE BY CHLOROAURATE(III) COMPLEXES
481
a decrease in the dielectric constant of the medium, the
electrostatic attraction between the oppositely charged
species increases and consequently the concentration
of the effective oxidizing Au(III) species as well as
the reactive zwitterionic form of alanine diminishes,
thereby decreasing the reaction rate. It is interesting to
note that the intermediate cyclic complex in the rate-
limiting step decomposes to a number of oppositely
charged ions, and hence it is quite expected that the
transition state will be very much polar. Consequently,
a decrease in the dielectric constant of the medium will
disfavor the transition state and hence will decrease the
reaction rate.
The reaction mechanism in this study has been
found to be very much similar to that for the Au(III)-
glycine reaction. However, the reaction rate is slower
than that for the oxidation of glycine. This may be ac-
counted for by the fact that introduction of a CH3
group to the α-carbon of glycine increases the steric
crowding in the transition state, and this is possibly
reflected in the higher value of overall enthalpy of acti-
vation of Au(III)–alanine reaction over that of Au(III)–
glycine reaction.
12. Andres-Ordax, F. J.; Arrizabalaga, A.; Peche, R. Anal
Quim 1992, 88, 440.
13. Insausti, M. J.; Mata-Perez, F.; Alvarez-Macho, M. P.
Int J Chem Kinet 1995, 27, 507.
14. Arrizabalaga, A.; Andres-Ordax, F. J.; Fernandez-
Aranguiz, M. Y.; Peche, R. Int J Chem Kinet 1996, 28,
799.
15. Sadler, P. J. Struct Bonding 1976, 29, 171.
16. Shaw, C. F., III. Perspect Biol Med 1979, 2, 287.
17. Dash, K. C.; Schmidbaur, H. Met Ions Biol Syst 1983,
14, 180.
18. Sadler, P. J.; Sue, R. E. Metal Based Drugs 1994, 1, 107.
19. Paclawski, K.; Fitzner, K. Met Mater Trans B 2004, 35,
1071.
20. Ericson, A.; Elding, L. I.; Elmorth, K. C. J Chem Soc,
Dalton Trans 1997, 1159.
21. (a) Paclawski, K.; Fitzner, K. Met Mater Trans B 2006,
37, 703; (b) Sen, P. K.; Sanyal, A.; Sen Gupta, K. K.
Bull Chem Soc Jpn 1996, 69, 1543.
22. Parish, R. V.; Howe, B. P.; Wright, J. P.; Mack, J.;
Prichard, R. G.; Buckley, R. G.; Elsome, A. M.; Fricker,
S. P. Inorg Chem 1996, 35, 1659.
23. Calamai, P.; Carotti, S.; Gherri, A.; Mazzei, T.; Messori,
L.; Mini, E.; Orioli, P.; Seperoui, G. P. Anti-Cancer Drug
Des 1998, 13, 67.
24. Che. C. PCT Int Appl 2004, 80.
25. Canumalla, A. J.; Al-Zaucil, N.; Phillips, M.; Isab,
A. A.; Shaw, C. F., III. J Inorg Biochem 2001, 85, 67.
26. Fukuzumi, S.; Ohkubo, K.; Ou, W. E. Z.; Shao, J.;
Kadish, K. M.; Hutchison, J. A.; Ghiggino, K. P.; Sintic,
P. J.; Crossley, M. J. J Am Chem Soc 2003, 125, 14984.
27. Marcon, G.; Messori, L.; Orioli, P.; Cinellu, M. A.;
Minghetti, G. Eur J Biochem 2003, 270, 4655.
28. Kostin, G. A.; Mashukov, V. I.; Torgov, V. G.;
Kalchenko, V. I.; Drapailo, A. B. Russ J Inorg Chem
2006, 51, 488.
Thanks are due to Dr. S. Bhar, Department of Chemistry,
Jadavpur University, for helpful discussions. Financial assis-
tance from University Grants Commission, New Delhi, India,
through the CAS program to the Department of Chemistry,
Jadavpur University, is gratefully acknowledged.
BIBLIOGRAPHY
29. Selvakannan, R.; Mandal, S.; Phadtare, S.; Gole, A.;
Pasricha, R.; Adyanthaya, S. D.; Sastry, M. J Colloid
Interface Sci 2004, 269, 97.
1. Laloo, D.; Mahanti, M. K. J Phys Org Chem 1990, 3,
799.
2. Sarathi, T. V. N. P.; Kumar, A. K.; Kishore, K. K.; Vani,
P. J Chem Soc 2005, 17, 329.
3. Kumar, A.; Kumar, P.; Ramamurthy, P. Polyhedron
1999, 18, 773.
30. Rodriguez-Fernandez, J.; Perez-Juste, J.; Mulvaney, P.;
Liz-Marzan, L. M. J Phys Chem B 2005, 109, 14257.
31. Sen, P. K.; Bilkis, A. B.; Sen Gupta, K. K. Int J Chem
Kinet 1998, 30, 613.
4. Huo, S. Y.; Song, C. Y.; Zhen, Y. J. Transition Met Chem
2007, 32, 936.
32. Pal, B.; Sen, P. K.; Sen Gupta, K. K. J Phys Org Chem
2001, 14, 284.
5. Bhargava, N.; Pandey, A.; Sharma, V. K. Oxidation
Commun 1995, 18, 178.
33. Sen Gupta, K. K.; Pal, B.; Sen, P. K. Int J Chem Kinet
1999, 31, 873.
6. Choubey, M.; Pandey, A. Oxidation Commun 1999, 22,
293.
34. Sen, P. K.; Gani, N.; Midya, J. K.; Pal, B. Transition Met
Chem 2008, 33, 229.
7. Alvarez-Macho, M. P.; Mata-Perez, F. Anal Quim 1992,
88, 409.
8. Devra, V. J Indian Chem Soc 2005, 82, 290.
9. Devra, V.; Jain, S.; Sharma, P. D. Int J Chem Kinet 1994,
26, 577.
35. Vogel, A. I. Elementary Practical Organic Chemistry
(Part III) Quantitative Organic Analysis; Longmans:
London, 1958; pp. 709, 710.
36. Maritz, B. S.; Van Eldik R. Inorg Chim Acta 1976, 17,
21.
10. Perez-Benito, J. F.; Mata-Perez, F.; Brillas, E. Can J
Chem 1987, 65, 2329.
37. Feigl, F. Spot Tests in Organic Analysis; Elsevier:
Amsterdam, 1956; p. 438.
11. Insausti, M. J.; Mata-Perez, F.; Alvarez-Macho, M. P.
Int J Chem Kinet 1992, 24, 411.
38. Clarke, H. T. A Handbook of Organic Analysis; Edward
Arnold: London, 1960; p. 126.
International Journal of Chemical Kinetics DOI 10.1002/kin