Bayer Andersen et al.
GPR139 Agonists in Parkinson Model
acids as agonists of the orphan G protein-coupled receptor GPR139. J. Chem.
Inf. Model. 54, 1553–1557. doi: 10.1021/ci500197a
Przedborski, S., Tieu, K., Perier, C., and Vila, M. (2004). MPTP as a mitochondrial
neurotoxic model of Parkinson’s disease. J. Bioenerg. Biomembr. 36, 375–379.
doi: 10.1023/b:jobb.0000041771.66775.d5
Radad, K., Gille, G., and Rausch, W. D. (2008). Dopaminergic neurons are
preferentially sensitive to long-term rotenone toxicity in primary cell culture.
Toxicol. In Vitro 22, 68–74. doi: 10.1016/j.tiv.2007.08.015
Javitch, J. A., D’Amato, R. J., Strittmatter, S. M., and Snyder, S. H.
(
1985). Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by
dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. U S A 82,
2
173–2177. doi: 10.1073/pnas.82.7.2173
Ransom, B. R., Kunis, D. M., Irwin, I., and Langston, J. W. (1987). Astrocytes
convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite,
Kamel, F., Goldman, S. M., Umbach, D. M., Chen, H., Richardson, G.,
Barber, M. R., et al. (2014). Dietary fat intake, pesticide use and Parkinson’s
disease. Parkinsonism Relat. Disord. 20, 82–87. doi: 10.1016/j.parkreldis.2013.
+
MPP . Neurosci. Lett. 75, 323–328. doi: 10.1016/0304-3940(87)90543-x
Rask-Andersen, M., Almén, M. S., and Schiöth, H. B. (2011). Trends in the
exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590. doi: 10.
1038/nrd3478
09.023
Kweon, G. R., Marks, J. D., Krencik, R., Leung, E. H., Schumacker, P. T.,
Hyland, K., et al. (2004). Distinct mechanisms of neurodegeneration
Richardson, J. R., Caudle, W. M., Guillot, T. S., Watson, J. L., Nakamaru-Ogiso, E.,
Seo, B. B., et al. (2007). Obligatory role for complex I inhibition in the
dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP). Toxicol. Sci. 95, 196–204. doi: 10.1093/toxsci/kfl133
induced by chronic complex
dopaminergic cells. J. Biol. Chem. 279, 51783–51792. doi: 10.1074/jbc.m4073
6200
I inhibition in dopaminergic and non-
3
Langston, J. W., Langston, E. B., and Irwin, I. (1984). MPTP-induced
parkinsonism in human and non-human primates–clinical and experimental
aspects. Acta Neurol. Scand. Suppl. 100, 49–54.
Liu, C., Bonaventure, P., Lee, G., Nepomuceno, D., Kuei, C., Wu, J., et al. (2015).
GPR139, an orphan receptor highly enriched in the Habenula and septum,
is activated by the essential amino acids L-tryptophan and L-phenylalanine.
Mol.Pharmacol. 88, 911–925. doi: 10.1124/mol.115.100412
Luthman, J., Fredriksson, A., Sundstrom, E., Jonsson, G., and Archer, T. (1989).
Selective lesion of central dopamine or noradrenaline neuron systems in the
neonatal rat: motor behavior and monoamine alterations at adult stage. Behav.
Brain Res. 33, 267–277. doi: 10.1016/s0166-4328(89)80121-4
Rossetti, Z. L., Sotgiu, A., Sharp, D. E., Hadjiconstantinou, M., and Neff, N. H.
(1988). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and free
radicals in vitro. Biochem. Pharmacol. 37, 4573–4574. doi: 10.1016/0006-
2952(88)90674-0
Sachs, C., and Jonsson, G. (1975). Mechanisms of action of 6-hydroxydopamine.
Biochem. Pharmacol. 24, 1–8. doi: 10.1016/0006-2952(75)90304-4
Schapira, A. H., and Gegg, M. (2011). Mitochondrial contribution to Parkinson’s
disease pathogenesis. Parkinsons. Dis. 2011:159160. doi: 10.4061/2011/159160
Sherer, T. B., Betarbet, R., Testa, C. M., Seo, B. B., Richardson, J. R., Kim, J. H.,
et al. (2003). Mechanism of toxicity in rotenone models of Parkinson’s disease.
J. Neurosci. 23, 10756–10764.
Matsuo, A., Matsumoto, S., Nagano, M., Masumoto, K. H., Takasaki, J.,
Matsumoto, M., et al. (2005). Molecular cloning and characterization of a
novel Gq-coupled orphan receptor GPRg1 exclusively expressed in the central
nervous system. Biochem. Biophys. Res. Commun. 331, 363–369. doi: 10.1016/j.
bbrc.2005.03.174
Shi, F., Shen, J. K., Chen, D., Fog, K., Thirstrup, K., Hentzer, M., et al. (2011).
Discovery and SAR of a series of agonists at orphan G protein-coupled receptor
139. ACS Med. Chem. Lett. 2, 303–306. doi: 10.1021/ml100293q
Song, J. X., Shaw, P. C., Wong, N. S., Sze, C. W., Yao, X. S., Tang, C. W.,
et al. (2012). Chrysotoxine, a novel bibenzyl compound selectively antagonizes
+
Mayer, R. A., Kindt, M. V., and Heikkila, R. E. (1986). Prevention of
the nigrostriatal toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by
inhibitors of 3,4-dihydroxyphenylethylamine transport. J. Neurochem. 47,
MPP , but not rotenone, neurotoxicity in dopaminergic SH-SY5Y cells.
Neurosci. Lett. 521, 76–81. doi: 10.1016/j.neulet.2012.05.063
Süsens, U., Hermans-Borgmeyer, I., Urny, J., and Schaller, H. C. (2006).
Characterisation and differential expression of two very closely related
G-protein-coupled receptors, GPR139 and GPR142, in mouse tissue and
during mouse development. Neuropharmacology 50, 512–520. doi: 10.1016/j.
neuropharm.2005.11.003
1073–1079. doi: 10.1111/j.1471-4159.1986.tb00722.x
Mizuno, Y., Sone, N., and Saitoh, T. (1987). Effects of 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the
enzymes in the electron transport system in mouse brain. J. Neurochem. 48,
1787–1793. doi: 10.1111/j.1471-4159.1987.tb05737.x
Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M.,
et al. (2011). Rotenone, paraquat and Parkinson’s disease. Environ. Health
Perspect. 119, 866–872. doi: 10.1289/ehp.1002839
Motulsky, H. J., and Christopoulos, A. (2003). Fitting Models to Biological Data
using Linear and Nonlinear Regression. A Practical Guide to Curve Fitting. San
Diego, CA: GraphPad Software Inc.
Tieu, K. (2011). A guide to neurotoxic animal models of Parkinson’s disease. Cold
Spring Harb. Perspect. Med. 1:a009316. doi: 10.1101/cshperspect.a009316
Tipton, K. F., and Singer, T. P. (1993). Advances in our understanding of
the mechanisms of the neurotoxicity of MPTP and related compounds.
J. Neurochem. 61, 1191–1206. doi: 10.1111/j.1471-4159.1993.tb13610.x
Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central
monoamine neurons. Eur. J. Pharmacol. 5, 107–110. doi: 10.1016/0014-
2999(68)90164-7
Murphy, A. J., and Croll-Kalish, S. (2004). KOR3like proteins and methods
of modulating KOR3L-mediated activity. Patent: PCT/US2004/004498[WO
2004/074841 A2].
Nagel, F., Falkenburger, B. H., Tonges, L., Kowsky, S., Pöppelmeyer, C.,
Schulz, J. B., et al. (2008). Tat-Hsp70 protects dopaminergic neurons in
midbrain cultures and in the substantia nigra in models of Parkinson’s disease.
J. Neurochem. 105, 853–864. doi: 10.1111/j.1471-4159.2007.05204.x
Nakamura, K., Bindokas, V. P., Marks, J. D., Wright, D. A., Frim, D. M.,
Miller, R. J., et al. (2000). The selective toxicity of 1-methyl-4-phenylpyridinium
to dopaminergic neurons: the role of mitochondrial complex I and reactive
oxygen species revisited. Mol. Pharmacol. 58, 271–278. doi: 10.1124/mol.
Conflict of Interest Statement: While this work was in progress, all authors were
employed and paid by the pharmaceutical company H. Lundbeck A/S in Valby,
Denmark, which focuses on research, development, production, marketing and
sale of medication for the treatment of psychiatric and neurological diseases.
58.2.271
Ossig, C., and Reichmann, H. (2015). Treatment strategies in early and advanced
Parkinson disease. Neurol. Clin. 33, 19–37. doi: 10.1016/j.ncl.2014.09.009
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-
time RT-PCR. Nucleic Acids Res. 29:e45. doi: 10.1093/nar/29.9.e45
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.
Przedborski, S., and Vila, M. (2003). The 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine mouse model: a tool to explore the pathogenesis of
Parkinson’s disease. Ann. N Y Acad. Sci. 991, 189–198. doi: 10.1111/j.1749-
6632.2003.tb07476.x
10