244
G. Y. Park et al.
4. CONCLUSIONS
In summary, we report the detailed syntheses and photophysical
properties of the phosphorescent iridium(III) complex having a differ-
ent species of plural (C^N) ligands in order to improve the lumi-
nescence efficiency by avoiding T–T annihilation and study
luminescent mechanism of the heteroleptic iridium complex. We have
synthesized the iridium complex such as Ir(piq-3F)2(dpq-4F) and stud-
ied their photophysical properties for the application in OLEDs. As a
result, in the case of Ir(piq-3F)2(dpq-4F), the excited energy is
absorbed mainly from piq-3F ligands and the excitation energy is
not intramolecular transferred to dpq-4F ligand but emits in piq-3F,
because of stronger MLCT characteristic and shorter lifetime of
piq-3F. Therefore the absorption and luminescence is concerned on
piq-3F. The dpq-3F ligand increases the luminescence efficiency by
avoiding T–T annihilation.
REFERENCES
[1] Tang, C. W. & VanSLyke, S. A. (1987). Appl. Phys. Lett., 51, 913.
[2] Baldo, M. A., Thompson, M. E., & Forrest, S. R. (2000). Nature, 403, 750.
[3] Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H. E., Adachi, C.,
Burrow, P. E., Forrest, S. R., & Thompson, M. E. (2001). J. Am. Chem. Soc., 123,
4304.
[4] Park, N. G., Kwak, M. Y., Kim, B. O., Kwon, O. K., Kim, Y. K., You, B. R., Kim, T. W.,
& Kim, Y. S. (2002). Jpn. J. Appl. Phys., 41, 1523.
[5] Park, N. G., Lee, J. E., Park, Y. H., & Kim, Y. S. (2004). Synth. Met., 145, 279.
[6] Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I.,
Bortz, M., Mui, B., Bau, R., & Thompson, M. E. (2001). Inorg. Chem., 40, 1704.
[7] Baldo, M. A., Thompson, M. E., & Forrest, S. R. (1999). Pure Appl. Chem., 71, 2095.
[8] Brooks, J., Babaya, T., Lamansky, S., Djurovich, P. I., Tsyba, I., Bau, R., &
Thompson, M. E. (2002). Inorg. Chem., 41, 3055.
[9] Kohler, A., Wilson, J. S., & Friend, R. H. (2002). Adv. Mater., 14, 701.
[10] Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N.,
Bau, R., & Thompson, M. E. (2003). J. Am. Chem. Soc., 125, 7377.
[11] Rho, H. H., Lee, Y. H., Park, Y. H., Park, G. Y., Ha, Y. K., & Kim, Y. S. (2006). Jpn.
J. Appl. Phys., 45, 568.
[12] Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S.,
Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M., & Ueno, K.
(2003). J. Am. Chem. Soc., 125, 12971.
[13] Wu, F. I., Su, H. J., Shu, C. F., Luo, L., Diau, W. G., Cheng, C. H., Duan, J. P., &
Lee, G. H. (2005). J. Mater. Chem., 15, 1035.
[14] Imai, Y., Johnson, E. F., Katto, T., Kurihara, M., & Sittle, J. K. (1975). J. Polym.
Sci., Polym. Chem. Ed., 13, 2233.
[15] Zhang, X., Fan, X., Wang, J., & Li, Y. (2004). J. Chin. Chem. Soc., 51, 1339.
[16] Nomoyama, M. (1975). J. Organomet. Chem., 86, 263.
[17] Hay, P. J. & Wadt, W. R. (1985). J. Chem. Phys., 82, 270.
[18] Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). J. Chem. Phys., 56, 2257.