Among the soluble oligomers reported to date, the func-
tionalized pentacene has one of the greatest potentials as a
semiconducting material.4 Adding bulky triisopropylsilyl-
ethynyl (TIPS) groups at the 6,13-positions of the pentacene
not only improves the π-orbital overlap but also enhances
the solubility and the oxidative stability of the material.
Moreover, solution-deposited OTFT device properties with
use of functionalized pentacene and anthradithiophene were
reported.5 To modify the chemical structure of TIPS penta-
cene, Anthony et al. synthesized various new oligomers based
on tetracene, pentacene ethers, and so on.6
Scheme 1. Synthesis of the Soluble Oligomer Core
(TIPSAnt)
Among the oligomeric systems for OTFTs, anthracene is
one of the most important fused aromatics.7 In 2005 and
2006, Meng et al. reported novel anthracene-oligomer-based
semiconductors that showed high field-effect mobilities with
excellent stability.8 In addition, attempts to develop soluble
oligomers with use of anthracene moieties have also been
reported recently.9
Our approach is to introduce bulky TIPS groups at the
9,10-positions of 2,6-dibromoanthracene molecules to create
a soluble oligomer core. The resulting functionalized dibromo
anthracene can be coupled with various aromatic boronic
acids or esters via the well-known Suzuki coupling reaction.
The target soluble oligomer core 2,6-dibromo-9,10-bis-
(triisopropylsilylethynyl)anthracene (TIPSAnt) was synthe-
sized according to the procedure discribed in Scheme 1.
Commercially available 2,6-diaminoanthraquinone 1 was
converted into 2,6-dibromoanthraquinone 210 by using the
Sandmeyer reaction and then TIPS was introduced at the
9,10-positions of the anthracene via synthetic routes similar
to that used for TIPS pentacene.5a TIPS groups make
anthracene highly soluble in common organic solvents such
as chloroform, chlorobenzene, and toluene. (cf. 2,6-dibro-
moanthraquinone 2 is insoluble in such solvents.)
counterparts of TIPSAnt. 2,6-Bis(5′-hexyl-thiophene-2′-yl)-
9,10-bis(triisopropylsilylethynyl)anthracene (TIPSAntHT)
and 2,6-bis(2′-phenylvinyl)-9,10-bis(triisopropylsilylethynyl)-
anthracene (TIPSAntPV) were synthesized via a Suzuki
coupling reaction as shown in Scheme 2.
Scheme 2. Synthesis of TIPSAntHT and TIPSAntPV
The bromo groups of TIPSAnt enable coupling of the
molecules with various borolanylaryl molecules, for example,
acene, thiophene, and fluorene derivatives. In the present
work we chose hexylthiophene and phenylenevinylene as
(3) (a) Shim, H.-K.; Jin J. I. AdV. Polym. Sci. 2002, 158, 1942. (b) Kim,
Y. M.; Lim, E.; Kang, I.-N.; Jung, B.-J.; Lee, J.; Koo, B. W.; Do, L.-M.;
Shim, H.-K. Macromolecules 2006, 39, 4081.
(4) (a) Anthony, J. E.; Eaton, D. L.; Parkin, S. R. Org. Lett. 2002, 4, 15.
(b) Sheraw, C. D.; Jackson, T. N.; Eaton, D. L.; Anthony, J. E. AdV. Mater.
2003, 15, 2009.
(5) (a) Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C.-C.; Jackson,
T. N. J. Am. Chem. Soc. 2005, 127, 4986. (b) Dickey, K. C.; Anthony, J.
E.; Loo, Y.-L. AdV. Mater. 2006, 18, 1721.
(6) (a) Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org. Lett. 2003, 5,
4245. (b) Payne, M. M.; Delcamp, J. H.; Parkin, S. R.; Anthony, J. E. Org.
Lett. 2004, 6, 1609. (c) Swartz, C. R.; Parkin, S. R.; Bullock, J. E.; Anthony,
J. E.; Mayer, A. C.; Malliaras, G. G. Org. Lett. 2005, 7, 3163.
(7) Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.;
Tokito, S. Angew. Chem., Int. Ed. 2003, 42, 1159.
(8) (a) Meng, H.; Sun, F.; Goldfinger, M. B.; Jaycox, G. D.; Li, Z.;
Marshall, W. J.; Blackman, G. S. J. Am. Chem. Soc. 2005, 127, 2406. (b)
Meng, H.; Sun, F.; Goldfinger, M. B.; Gao, F.; Londono, D. J.; Marshal,
W. J.; Blackman, G. S.; Dobbs, K. D.; Keys, D. E. J. Am. Chem. Soc.
2006, 128, 9304.
(9) (a) Schmidt, R.; Go¨ttling, S.; Leusser, D.; Stalke, D.; Krausea, A.-
M.; Wu¨rthner, F. J. Mater. Chem. 2006, 16, 3708. (b) Cui, W.; Zhang, X.;
Jiang, X.; Tian, H.; Yan, D.; Geng, Y.; Jing, X.; Wang, F. Org. Lett. 2006,
8, 785.
The products were bright orange, highly crystalline solids.
Similar to TIPSAnt, TIPSAntHT and TIPSAntPV also
show good solubility in common organic solvents due to the
TIPS groups and especially TIPSAntHT shows higher
solubility due to hexyl groups on the thiophenes. The
1
compounds were characterized by H NMR and 13C NMR,
(10) (a) Hodge, P.; Power, G. A.; Rabjohns, M. A. Chem. Commun. 1997,
73. (b) Lee, S. K.; Yang, W. J.; Choi, J. J.; Kim, C. H.; Jeon, S.-J.; Cho,
B. R. Org. Lett. 2005, 7, 323.
as well as elemental analysis. (See the Supporting Informa-
tion.)
2574
Org. Lett., Vol. 9, No. 13, 2007