4306
K. R. Reddy et al.
REFERENCES
1. (a) Decker, P.; Schweer, H. Origins of Life 1984, 14, 335; (b) Degraaf, R. M.;
Visscher, J.; Xu, Y.; Arrhenius, G.; Schwartz, W. A potentially prebiotic aldol
condensation. J. Mol. Evol. 1998, 47, 501.
2. For reviews, see (a) Kim, B. M.; Williams, S. F.; Masamune, S. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., and Heathcock, C. H. Eds.; Elsevier:
Oxford, 1991, Vol. 2, ch. 1.7; (b) Groger, H.; Vogl, E. M.; Shibasski, M. New
catalytic concepts for the asymmetric Aldol reaction. Chem. Eur. J. 1998, 4,
1137; (c) Nelson, S. G. Catalyzed enantioselective Aldol additions of latent
enolate equivalents. Tetrahedron: Asymmetry 1998, 9, 357; (d) Carreira, E. M.
In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pflatz, A., and
Yamamoto, H. Eds.; Springler-Verlag: Heidelberg, 1999, Vol. 3, ch. 29.1;
(e) Mahrwald, R. Diastereoselection in Lewis-acid mediated Aldol additions.
Chem. Rev. 1999, 99, 1095.
3. (a) Machajeswski, T. D.; Wong, C.-H. The catalytic asymmetric Aldol reactions.
Angew. Chem., Int. Ed. 2000, 39, 1352, and references therein; (b) Gijsen, H. J. M.;
Qiao, L.; Fitz, W.; Wong, C.-H. Recent advances in the chemoenzymatic synthesis
of carbohydrates and carbohydrate mimetics. Chem. Rev. 1996, 96, 443;
(c) Wong, C.-H.; Whitesides, G. M. Enzymes in Synthetic Organic Chemistry;
Pergamon: Oxford, 1994; (d) Zhong, G.; Lerner, R. A.; Barbas, C. F. III. Broad-
ening the aldolase catalytic antibody repertoire by combining reactive immuniz-
ation and ransition state theory: New enantio- and diastereoselectivites. Angew.
Chem., Int. Ed. Engl. 1999, 38, 3738; (e) Hoffman, T.; Zhong, G.; List, B.;
Shabat, D.; Anderson, J.; Gramatikova, S.; Lerner, R. A.; Barbas, C. F. III.
Aldolase antibodies of remarkable scope. J. Am. Chem. Soc. 1998, 120, 2768.
4. (a) List, B.; Lerner, R. A.; Barbas, C. F. III. Proline-catalyzed direct asymmetric
aldol reactions. J. Am. Chem. Soc. 2000, 122, 2395; (b) Sakthivel, K.; Notz, W.;
Bui, T.; Barbas, C. F. Amino acid catalyzed direct asymmetric aldol reactions:
a bioorganic approach to catalytic asymmetric carbon-carbon bond-forming
reactions. J. Am. Chem. Soc. 2001, 123, 5260; (c) List, B. Asymmetric amino
catalysic. Synlett 2001, 1675; (d) List, B. Proline-catalyzed asymmetric
reactions. Tetrahedron 2002, 58, 5573; (e) List, B. Enamine catalysis is a
powerful strategy for the catalytic generation and use of carbanion equivalents.
Acc. Chem. Res. 2004, 37, 548; (f) Notz, W.; Tanaka, F.; Barbas, C. F., III.
Enamine-based organocatalysis with proline and diamines: the development of
direct catalytic asymmetric Aldol, Mannich, Michael, and Diels-Alder reactions.
Acc. Chem. Res. 2004, 37, 580; (g) Dalko, P. I.; Moison, L. In the golden age of
organocatalysis. Angew. Chem., Int. Ed. 2004, 43, 5138; (h) Orsini, F.;
Pelizzoni, F.; Forte, M.; Destro, R.; Gariboldi, P. 1,3-Dipolar cycloadditions of
azomethineylides with aromatic aldehydes. syntheses of 1-oxapyrrolizidines and
1,3-oxazolidines. Tetrahedron 1998, 44, 519.
5. (a) Welton, T. Room-temperature ionic liquids. Solvents for synthesis and
catalysis. Chem. Rev. 1999, 99, 2071; (b) Wasserscheid, P.; Keim, M. Ionic
liquids – new “solutions” for transition metal catalysis. Angew. Chem., Int. Ed.
2000, 39, 3772; (c) Wilkes, J. S. A short history of ionic liquids—from molten
salts to neoteric solvents. Green Chem. 2002, 4, 73; (d) Wilkes, J. S. Properties
of ionic liquid solvents for catalysis. J. Mol. Catal. A: Chem. 2004, 214, 11;
(e) Picquet, M.; Poinsot, D.; Stutzmann, S.; Tkatchenko, I.; Tommasi, I.;
Wasserscheid, P.; Zimmermann, J. Ionic liquids: media for better molecular
catalysis. Top. Catal. 2004, 29, 139.