ChemComm
Communication
rotational orientation between the mixed DHBQ–THB and pure
DHBQ overlayers cannot be quantitatively assessed due to the many
inequivalent bonding situations in the large computational unit
cell, but we speculate that the rotation occurs to optimise the
molecule–substrate interaction arising from an increased number
of Cu–carbonyl bonds.
We acknowledge support from the Danish National Research
Foundation, the Danish Council for Independent Research, the
Marie-Curie networks SMALL and MONET, the Lundbeck Founda-
tion, DCSC, and the Alexander von Humboldt-Foundation.
Notes and references
1 (a) J. A. A. W. Elemans, S. B. Lei and S. De Feyter, Angew. Chem., Int.
Ed., 2009, 48, 7298–7332; (b) G. Franc and A. Gourdon, Phys. Chem.
Chem. Phys., 2011, 13, 14283–14292.
2 J. V. Barth, Annu. Rev. Phys. Chem., 2007, 58, 375–407.
3 (a) F. Bebensee, C. Bombis, S.-R. Vadapoo, J. R. Cramer, F. Besenbacher,
K. V. Gothelf and T. R. Linderoth, J. Am. Chem. Soc., 2013, 135, 2136–2139;
(b) M. Kittelmann, P. Rahe, A. Gourdon and A. Kuhnle, ACS Nano, 2012, 6,
7406–7411.
4 (a) L. Bartels, Nat. Chem., 2010, 2, 87–95; (b) A. M. Beatty, Coord.
Chem. Rev., 2003, 246, 131–143; (c) A. C. Papageorgiou, S. Fischer,
J. Reichert, K. Diller, F. Blobner, F. Klappenberger, F. Allegretti,
A. P. Seitsonen and J. V. Barth, ACS Nano, 2012, 6, 2477–2486.
5 (a) M. E. Canas-Ventura, F. Klappenberger, S. Clair, S. Pons, K. Kern,
H. Brune, T. Strunskus, C. Woll, R. Fasel and J. V. Barth, J. Chem.
Phys., 2006, 125; (b) M. N. Faraggi, C. Rogero, A. Arnau, M. Trelka,
D. Ecija, C. Isvoranu, J. Schnadt, C. Marti-Gastaldo, E. Coronado,
J. M. Gallego, R. Otero and R. Miranda, J. Phys. Chem. C, 2011, 115,
21177–21182; (c) L. Kanninen, N. Jokinen, H. Ali-Loytty, P. Jussila,
K. Lahtonen, M. Hirsimaki, M. Valden, M. Kuzmin, R. Parna and
E. Nommiste, Surf. Sci., 2011, 605, 1968–1978; (d) N. Lin,
A. Dmitriev, J. Weckesser, J. V. Barth and K. Kern, Angew. Chem.,
Int. Ed., 2002, 41, 4779–4783; (e) M. Matena, M. Stohr, T. Riehm,
J. Bjork, S. Martens, M. S. Dyer, M. Persson, J. Lobo-Checa,
K. Muller, M. Enache, H. Wadepohl, J. Zegenhagen, T. A. Jung and
L. H. Gade, Chem.–Eur. J., 2010, 16, 2079–2091.
6 (a) T. Eralp, A. Shavorskiy, Z. V. Zheleva, G. Held, N. Kalashnyk,
Y. X. Ning and T. R. Linderoth, Langmuir, 2010, 26, 18841–18851;
(b) V. Humblot, C. Methivier, R. Raval and C. M. Pradier, Surf. Sci.,
2007, 601, 4189–4194.
7 (a) R. Pawlak, S. Clair, V. Oison, M. Abel, O. Ourdjini, N. A. A.
Zwaneveld, D. Gigmes, D. Bertin, L. Nony and L. Porte, ChemPhysChem,
2009, 10, 1032–1035; (b) S. Polmann, A. Bayer, C. Ammon and
H. P. Steinruck, Z. Phys. Chem., 2004, 218, 957–971; (c) C. Ammon,
A. Bayer, G. Held, B. Richter, T. Schmidt and H. P. Steinruck, Surf. Sci.,
2002, 507, 845–850.
Fig. 3 Calculated adsorption geometry for THB (left) and DHBQ (right) on
Cu(111) in side (a) and top (b) view, simulated STM images (c) and the energy
landscape (d) relative to THB in the gas phase. Black bars represent enthalpies
and red bars represent free energies at RT.
the conjugated p-system of the carbon ring in THB can remain
relatively intact when the molecule is dehydrogenated on the surface.
A strong interaction between the carbonyl oxygen and the Cu surface
is supported by the XPS measurements showing that the O 1s BE in
the carbonyl group is measurably higher on Au(111) (531.1 eV)
compared to that on Cu(111) (530.8 eV), while the hydroxyl O 1s
BE is the same. Overall, the stronger interaction between the carbonyl
oxygen and the surface, compared to the hydroxyl–surface interaction,
brings the dehydrogenated DHBQ molecule closer to the surface
compared to THB. Simulated STM images based on the Tersoff–
Hamann model (Fig. 3c) show a lower apparent height for DHBQ
than for THB reflecting mainly these different adsorption heights.
The change in the STM images observed upon annealing can
now be rationalised: at RT, a mixture of THB and DHBQ exists, as
implied by the appearance of features with different apparent height
in the STM images. Quantitative analysis of STM images in Fig. 1a
shows that the protrusions exhibit a variation in apparent heights
rather than two distinct levels, possibly due to locally varying
bonding configurations. We estimate the fraction of DHBQ (dim
protrusions) to lie in the range 0.5–0.75. This range corresponds to
dehydrogenation of 31 ꢁ 7% of the hydroxyl groups consistent with
XPS (Fig. 1b and ESI† Section 3). The DHBQ and THB species are
thoroughly intermixed indicating a homogenous level of dehydro-
8 Y. Q. Zhang, N. Kepcija, M. Kleinschrodt, K. Diller, S. Fischer, A. C.
Papageorgiou, F. Allegretti, J. Bjork, S. Klyatskaya, F. Klappenberger,
M. Ruben and J. V. Barth, Nat. Commun., 2012, 3, 1286.
9 (a) N. Lin, D. Payer, A. Dmitriev, T. Strunskus, C. Woll, J. V. Barth and
K. Kern, Angew. Chem., Int. Ed., 2005, 44, 1488–1491; (b) M. Ruben,
D. Payer, A. Landa, A. Comisso, C. Gattinoni, N. Lin, J. P. Collin,
J. P. Sauvage, A. De Vita and K. Kern, J. Am. Chem. Soc., 2006, 128,
15644–15651; (c) S. Stepanow, T. Strunskus, M. Lingenfelder,
A. Dmitriev, H. Spillmann, N. Lin, J. V. Barth, C. Woll and K. Kern,
J. Phys. Chem. B, 2004, 108, 19392–19397.
10 C. A. Hansen and J. W. Frost, J. Am. Chem. Soc., 2002, 124, 5926–5927.
genation across the surface. Annealing the sample to 370 K leads to 11 H. M. Zhang, W. Zhao, Z. X. Xie, L. S. Long, B. W. Mao, X. Xu and
L. S. Zheng, J. Phys. Chem. C, 2007, 111, 7570–7573.
12 (a) L. M. Lanni, R. W. Tilford, M. Bharathy and J. J. Lavigne, J. Am.
further dehydrogenation, converting all THB molecules into DHBQ.
A suggested structural model for the DHBQ overlayer is shown in
Chem. Soc., 2011, 133, 13975–13983; (b) N. A. A. Zwaneveld,
Fig. 1c and Fig. S5 (ESI†). The model is based on the optimal
hydrogen bonding pattern found from DFT calculations in the gas
phase using the experimentally observed unit cell. This structure was
R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin and L. Porte,
J. Am. Chem. Soc., 2008, 130, 6678–6679.
13 T. Kammler and J. Kuppers, J. Chem. Phys., 1999, 111, 8115–8123.
14 L. Ferrighi, G. K. H. Madsen and B. Hammer, J. Chem. Phys., 2011, 135.
subsequently transferred to a Cu substrate and relaxed, allowing 15 (a) S. Clair, S. Pons, S. Fabris, S. Baroni, H. Brune, K. Kern and
J. V. Barth, J. Phys. Chem. B, 2006, 110, 5627–5632; (b) T. Classen,
M. Lingenfelder, Y. Wang, R. Chopra, C. Virojanadara, U. Starke,
G. Costantini, G. Fratesi, S. Fabris, S. de Gironcoli, S. Baroni, S. Haq,
formation of Cu–carbonyl bonds. The optimised structure is com-
prised of parallel rows of molecules which are inter-linked within the
rows via double hydrogen bonds. The origins of the slight change in
9310 Chem. Commun., 2013, 49, 9308--9310
R. Raval and K. Kern, J. Phys. Chem. A, 2007, 111, 12589–12603.
c
This journal is The Royal Society of Chemistry 2013