Paper
RSC Advances
Acknowledgements
This work was nancially supported by the National Natural
Science Foundation of China (Grant No. 21271119) and Inno-
vation Fund of Science & Technology of Graduate Students
(SDUST).
Notes and references
1 L. Han, L. Zeng, M. Wei, C. Li and A. Liu, Nanoscale, 2015, 7,
11678–11685.
2 K. M. Koeller and C. H. Wong, Nature, 2001, 409, 232–240.
´
3 N. Duran and E. Esposito, Appl. Catal., B, 2000, 28, 83–99.
4 I. Y. Sakharov, I. S. Alpeeva and E. E. Efremov, J. Agric. Food
Chem., 2011, 59, 809–813.
Fig. 10 Selectivity analysis for glucose detection using GOx and PDI–
CuO catalyst by monitoring the relative absorbance (inset: the color
change corresponding to different sample: 1.0 mM glucose, 5.0 mM
fructose, 5.0 mM maltose, 5.0 mM lactose, and 5.0 mM sucrose).
5 H. Wei and E. Wang, Anal. Chem., 2008, 80, 2250–2254.
6 W. Chen, J. Chen, Y. B. Feng, L. Hong, Q. Y. Chen, L. F. Wu,
X. H. Lin and X. H. Xia, Analyst, 2012, 137, 1706–1712.
7 R. Breslow and L. E. Overman, J. Am. Chem. Soc., 1970, 92,
1075–1077.
8 L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu,
T. H. Wang, J. Feng, D. Yang and S. Perrett, Nat.
Nanotechnol., 2007, 2, 577–583.
9 Y. Song, K. Qu, C. Zhao, J. Ren and X. Qu, Adv. Mater., 2010,
22, 2206–2210.
10 Y. Song, X. H. Wang, C. Zhao, K. Qu, J. Ren and X. Qu,
Chem.–Eur. J., 2010, 16, 3617–3621.
and other substances which could generate H2O2 in a chemical
reaction. As our known, glucose oxidase (GOx) can catalyze the
oxidation of glucose to produce H2O2 in the presence of oxygen.
The relevant standard curve of the glucose response is shown in
Fig. 9B. Clearly, the absorbance was linearly against glucose
concentration in the range of 2–50 mM with the low detection
limit of 6.533 ꢂ 10ꢀ7 M.
11 E. L. Zhou, C. Qin, P. Huang, X. L. Wang, W. C. Chen,
K. Z. Shao and Z. M. Su, Chem.–Eur. J., 2015, 21, 11894–
11898.
12 W. W. He, H. M. Jia, X. X. Li, Y. Lei, J. Li, H. X. Zhao, L. W. Mi,
L. Z. Zhang and Z. Zheng, Nanoscale, 2012, 4, 3501–3506.
13 Z. H. Dai, S. H. Liu, J. C. Bao and H. X. Ju, Chem.–Eur. J., 2009,
15, 4321–4326.
14 Y. L. Dong, H. G. Zhang, Z. U. Rahman, L. Su, X. J. Chen,
J. Hu and X. G. Chen, Nanoscale, 2012, 4, 3969–3976.
15 Y. J. Chen, H. Y. Cao, W. B. Shi, H. Liu and Y. M. Huang,
Chem. Commun., 2013, 49, 5013–5015.
3.7 Selectivity analysis
To investigate the selectivity of detection of glucose, some other
saccharides including 5.0 mM fructose, 5.0 mM maltose,
5.0 mM lactose, and 5.0 mM sucrose were selected as control
samples. As shown in the Fig. 10, there was no obvious absor-
bance at 652 nm or color change, though the concentration of
analogues were 5 times higher than that of glucose. Therefore, it
can be concluded that the fabricated colorimetric sensor
demonstrates high selectivity and affinity to glucose.
16 Y. Nangia, B. Kumar, J. Kaushal and C. Raman Suri, Anal.
Chim. Acta, 2012, 751, 140–145.
4. Conclusions
In summary, we synthesized a new kind of N,N0-di-carboxy 17 X. Xia, J. Zhang, N. Lu, M. J. Kim, K. Ghale, Y. Xu,
methyl perylene diimides functionalized CuO nano-
composites, which demonstrate a intrinsic peroxidase activity.
E. M. Kenzie, J. Liu and H. Ye, ACS Nano, 2015, 9, 9994–
10004.
The PDI–CuO nanocomposites could rapidly catalyze the 18 Q. Cai, S. K. Lu, F. Liao, Y. Q. Li, S. Z. Ma and M. W. Shao,
oxidation of the substrate TMB to produce a blue product Nanoscale, 2014, 6, 8117–8123.
observed by the naked eye within 40 seconds. The catalysis was 19 Y. Zhang, C. Xu, B. Li and Y. Li, Biosens. Bioelectron., 2013,
shown to coincide with typical Michaelis–Menten kinetics and 43, 205–210.
its catalytic property is strongly dependent on pH and temper- 20 H. Zhao, Y. M. Dong, P. P. Jiang, G. L. Wang and J. J. Zhang,
ature. On the basis of an intrinsic peroxidase-like activity, we ACS Appl. Mater. Interfaces, 2015, 7, 6451–6461.
designed an colorimetric biosensor platform that can conve- 21 L. F. Sun, Y. Y. Ding, Y. L. Jiang and Q. Y. Liu, Sens. Actuators,
niently detect H2O2 and glucose. With the high sensitivity, low
B, 2017, 239, 848–856.
limits of detection (H2O2: 2.38 ꢂ 10ꢀ6 M; glucose: 6.533 ꢂ 10ꢀ7 22 L. Y. Zhang, M. X. Chen, Y. L. Jiang, M. M. Chen, Y. N. Ding
M), and rapid response time, the proposed PDI–CuO biosensor
and Q. Y. Liu, Sens. Actuators, B, 2017, 239, 28–35.
platform shows great promise as a low-cost sensor for envi- 23 Q. Y. Liu, Y. L. Jiang, L. Y. Zhang, X. P. Zhou, X. T. Lv,
ronmental monitoring, medical diagnostics, immunoassays
and biocatalysis.
Y. Y. Ding, L. F. Sun, P. P. Chen and H. L. Yin, Mater. Sci.
Eng., C, 2016, 65, 109–115.
This journal is © The Royal Society of Chemistry 2017
RSC Adv., 2017, 7, 25220–25228 | 25227