Organic Letters
Letter
J. Chem. Soc. 1955, 2610−2615. (c) Yagishita, K. Bull. Agric. Chem. Soc.
Jpn. 1959, 23, 217−222.
possible defense function in cruciferous vegetables. We detected
13 and 15 in many other common plant foods. Some traditional
diets might contain up to 1 mg/day of 13 and 15 among an
abundance of biologically active triterpenoids having medicinal
and health benefits.
Regarding the title question, we have shown that 13 and 15 are
widespread in nature but routinely overlooked by usual analytical
methods. How many more secondary metabolites are similarly
overlooked in plants and microorganisms? A metabolomics
approach can reveal a vast complexity of hydrophobic substances.
Plant metabolic profiling, still in its infancy, might benefit from
our GC-MS and HSQC strategy for mixture analysis,16a which
can definitively identify and quantify numerous nonpolar
metabolites at 1 μg levels.
(6) (a) Laird, W.; Spring, F. S.; Stevenson, R. J. Chem. Soc. 1961, 2638−
2642. (b) Agata, I.; Corey, E. J.; Hortmann, A. G.; Klein, J.; Proskow, S.;
Ursprung, J. J. J. Org. Chem. 1965, 30, 1698−1710. (c) Chivers, H.;
Corbett, R. E.; Mitchell, R. E. M. J. Chem. Soc. C 1966, 1814−1816.
(7) Hua, J.; Luo, S.-h.; Li, S.-h.; Hua, Y. Tianran Chanwu Yanjiu Yu
Kaifa 2012, 24, 761−763, 831.
(8) Shan, H.; Wilson, W. K.; Phillips, D. R.; Bartel, B.; Matsuda, S. P. T.
Org. Lett. 2008, 10, 1897−1900.
(9) Bauer, S. Ph.D. dissertation, Westfalischen Wilhelms-Universitat:
̈
̈
Munster, 2002.
̈
(10) Shibuya, M.; Xiang, T.; Katsube, Y.; Otsuka, M.; Zhang, H.;
Ebizuka, Y. J. Am. Chem. Soc. 2007, 129, 1450−1455.
(11) Our past familiarity with Bauer’s work involved targeted searches
for specific GC-MS data. The description of 13 was found during an
unhurried exploration of the entire dissertation. Bauer’s lack of an
authentic standard or definitive literature data precluded unambiguous
identification of 13. His evidence for 13 included parallels between
oleanane and ursane GC retention times. However, the retention
patterns did not extend well to HPLC, and this finding raised misleading
doubts about the identification of 13. His diligent efforts could not
separate 13 from 2 by HPLC (MeOH or MeCN in water) or AgNO3-
TLC, and separation on Ag+-HPLC was slight.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, plant analyses, molecular
modeling, GC-MS and NMR figures (PDF)
Excel macro to analyze HSQC data for the presence of
(12) (a) Bauer, S.; Schulte, E.; Thier, H.-P. Eur. Food Res. Technol.
2004, 219, 487−491. (b) Bauer, S.; Schulte, E.; Thier, H.-P. Eur. Food
Res. Technol. 2005, 220, 5−10.
(13) (a) Misra, T. N.; Singh, R. S.; Upadhyay, J.; Srivastava, R. J. Nat.
Prod. 1984, 47, 368−372. (b) Reference 7. The impressive performance
of DFT calculations is consistent with the typical accuracy of predicted
and reported NMR chemical shifts (each roughly 0.5 ppm for 13C):
(c) Plainchont, B.; Nuzillard, J.-M. Magn. Reson. Chem. 2013, 51, 54−59.
(14) Triterpene isomerization in TfOH: (a) Surendra, K.; Corey, E. J. J.
Am. Chem. Soc. 2009, 131, 13928−13929. Isomerization with BF3-
etherate or H2SO4: (b) Ageta, H.; Shiojima, K.; Arai, Y. Chem. Pharm.
Bull. 1987, 35, 2705−2716. HCOOH isomerization is less common:
Reference 4b.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(15) (a) Fayez, M. B. E.; Grigor, J.; Spring, F. S.; Stevenson, R. J. Chem.
Soc. 1955, 3378−3383. (b) Kamdem, R. S. T.; Wafo, P.; Yousuf, S.; Ali,
Z.; Adhikari, A.; Rasheed, S.; Khan, I. A.; Ngadjui, B. T.; Fun, H.-K.;
Choudhary, M. I. Org. Lett. 2011, 13, 5492−5495.
The Robert A. Welch Foundation (C-1323) supported this work.
We thank Kaylah Dunbar and Matias I. Kinzurik (Rice
University) for carrying out early experiments. NMR instru-
mentation was supported by the W. M. Keck Foundation
(University of Houston) and the John S. Dunn Sr. Gulf Coast
Consortium for Magnetic Resonance (Rice University).
Quantum mechanical calculations were supported by the NSF
under Grants OCI-0959097 and EIA-0216467.
(16) NMR precision of 0.001 and 0.01 for 1H and 13C (broadly
reproducible for nonpolar, nonacidic, nonbasic substances) has long
been essential for our spectral analyses: (a) Castillo, D. A.; Kolesnikova,
M. D.; Matsuda, S. P. T. J. Am. Chem. Soc. 2013, 135, 5885−5894.
(b) Herrera, J. B.; Bartel, B.; Wilson, W. K.; Matsuda, S. P. T.
Phytochemistry 1998, 49, 1905−1911. (c) Wilson, W. K.; Sumpter, R.
M.; Warren, J. J.; Rogers, P. S.; Ruan, B.; Schroepfer, G. J., Jr. J. Lipid Res.
1996, 37, 1529−1555.
REFERENCES
■
(1) For reviews and leading references, see: Hill, R. A.; Connolly, J. D.
Nat. Prod. Rep. 2015, 32, 273−327.
(2) (a) Xu, R.; Fazio, G. C.; Matsuda, S. P. T. Phytochemistry 2004, 65,
261−291. (b) Thimmappa, R.; Geisler, K.; Louveau, T.; O'Maille, P.;
Osbourn, A. Annu. Rev. Plant Biol. 2014, 65, 225−257. (c) Phillips, D. R.;
Rasbery, J. M.; Bartel, B.; Matsuda, S. P. T. Curr. Opin. Plant Biol. 2006,
9, 305−314.
(3) The Graphical Abstract shows unique SciFinder hits for the 3β-OH
plus 3β-OAc triterpenes since 1970. See Table S1 for details.
(4) This trivial name fits well with the structural pattern illustrated in
Figure 1: α- and β-amyrin are the Δ12 ursane and oleanane isomers,
respectively, and γ- and δ-amyrin are the analogous Δ13(18) olefins.
The only well-defined usage of “γ-amyrin” in the literature refers to urs-
13(18)-en-3β-ol: (a) Su, Y.; Tachibana, S.; Sumimoto, M. Mokuzai
Gakkaishi 1986, 32, 190−202. Other references to “γ-amyrin” are
ambiguous structurally: (b) Dieterle, H.; Salomon, A.; Herzberg, E.
Arch. Pharm. Ber. Dtsch. Pharm. Ges. 1931, 269, 78−87. (c) Nikiema, J.
B.; Vanhaelen-Fastre, R.; Vanhaelen, M. Planta Med. 1997, 63, 486. (d)
Reference 5 of Supporting Information.
(17) (a) Nielsen, H. B.; Hazell, A.; Hazell, R.; Ghia, F.; Torssell, K. B.
G. Phytochemistry 1994, 37, 1729−1735. Although the lack of
assignments and multiplicities in the 13C NMR spectrum of 15a
precludes estimating HSQC methyl data for 15 or 15a, the distinctive
olefinic 13C chemical shifts were used to detect acetate 15a in a
triterpene mixture: (b) Pereira, P. S.; Franca, S. d. C.; Anderson, d. O. P.
V.; Breves, C. M. d. S.; Pereira, S. I. V.; Sampaio, S. V.; Nomizo, A.; Dias,
D. A. Quim. Nova 2008, 31, 20−24. (c) Ito, R.; Hashimoto, I.;
Masukawa, Y.; Hoshino, T. Chem. - Eur. J. 2013, 19, 17150−17158. A
useful MS figure of 15a is shown, but 1H and 13C NMR data are given
only for acetone-d6, an uncommon solvent for triterpenes.
(18) Hexane extracts of fruit skins, flowers, roots, or nonsaponifiable
lipids contained a mixture of phytosterols, waxes, triterpenoids, and
other metabolites. Flash chromatography gave a triterpene alcohol
fraction that was enriched in 13 and 15 by HPLC and analyzed by GC-
MS and NMR.
(5) (a) Easton, J. D.; Manson, W.; Spring, F. S. J. Chem. Soc. 1953,
943−944. (b) Beaton, J. M.; Spring, F. S.; Stevenson, R.; Strachan, W. S.
D
Org. Lett. XXXX, XXX, XXX−XXX