8
46 Baille et al.
Macromolecules, Vol. 36, No. 3, 2003
barriers of the dendrimers can be related to that
obtained for ethylene glycol (Rh ) 0.24 nm) and two
PEG samples with molecular weights of 600 and 2000
(3) Gao, P.; Fagerness, P. E. Pharm. Res. 1995, 12, 955-
9
64.
(
4) Masaro, L.; Zhu, X. X.; Macdonald, P. M. Macromolecules
998, 31, 3880-3885.
1
(Rh ) 1.25 and 2.27 nm, respectively), which have Ea
(
5) Fujita, H. Adv. Polym. Sci. 1961, 3, 1-47.
6) Yasuda, H.; Lamaze, C. E.; Ikenberry, L. D. Makromol. Chem.
1968, 118, 19-35.
values of 30.0, 36.5, and 39.0 kJ /mol, respectively.
Although the dendrimers used here generally possess
higher molecular weights than the linear PEGs studied,
the energy barriers for the dendrimers are much lower
in comparison with the linear PEGs. For the one that
is comparable in molecular weight, PPI(TEO)8 has a
similar molecular weight as PEG-2000, but its energy
barrier is much lower (28 kJ /mol for PPI(TEO)8 vs 39
kJ /mol for PEG-2000). It is possible that ethylene glycol
and PEG can form hydrogen bonds more easily with the
polymer matrix and with the aqueous surrounding in
comparison to the dendrimers. For each dendrimer, the
activation energy value obtained with the model of Petit
et al. (Figure 11) is higher than the diffusional activa-
tion energy (Figure 10). The difference is not yet well
understood. However, it seems that the apparent acti-
(
(7) Vrentas, J . S.; Duda, J . L. J . Polym. Sci., Polym. Phys. Ed.
977, 15, 403-416.
8) Vrentas, J . S.; Duda, J . L. J . Polym. Sci., Polym. Phys. Ed.
977, 15, 417-439.
9) Phillies, G. D. J . Macromolecules 1986, 19, 2367-2376.
1
(
(
1
(
10) Vrentas, J . S.; Vrentas, C. M. Macromolecules 1994, 27,
4684-4690.
11) Petit, J .-M.; Roux, B.; Zhu, X. X.; Macdonald, P. M. Macro-
molecules 1996, 29, 6031-6036.
(
(
(
12) Amsden, B. Macromolecules 1998, 31, 8382-8395.
13) Masaro, L.; Zhu, X. X. Prog. Polym. Sci. 1999, 24, 731-
7
75.
(14) Nesmelova, I. V.; Skirda, V. D.; Fedotov, V. D. Biopolymers
2002, 63, 132-140.
15) Seland, J . G.; Ottaviani, M.; Hafskjold, Bjørn J . Colloid
(
(
(
Interface Sci. 2001, 239, 168-177.
16) Derrick, T. S.; Larive, C. K. Appl. Spectrosc. 1999, 53, 1595-
2
vation energy obtained from k can be related to the
1
600.
maximum energy that the diffusing molecule has to
overcome to diffuse in the polymer matrix at gel polymer
concentration.
17) Penke, B.; Kinsey, S.; Gibbs, S. J .; Moerland, T. S.; Locke, B.
R. J . Magn. Reson. 1998, 132, 240-254.
(18) Manz, B.; Callaghan, P. T. Macromolecules 1997, 30, 3309-
3
316.
(
19) Yokoyama, H.; Kramer, E. J .; Fredrickson, G. H. Macromol-
Con clu sion
ecules 2000, 33, 2249-2257.
It is clearly shown that the self-diffusion coefficients
of the dendrimers decrease with increasing molecular
size of the diffusant, with increasing PVA concentration
but with a decreasing temperature. The physical model
of Petit et al. has been used successfully to describe the
variation of the self-diffusion coefficient with the mo-
lecular size of the dendrimer, the polymer concentration,
and the temperature. These results show that the larger
diffusing molecule needs higher activation energy to
escape its present surrounding and to move into an
adjacent environment. It is also the case when the
polymer concentration increases. The apparent activa-
tion energy of diffusion varies in the range 28.0-40.9
kJ /mol from PPI(TEO)8 to PPI(TEO)64 dendrimers. The
study shows that the dendrimers have a density distri-
bution between a fractal structure and a uniform
density distribution and that the temperature in the
range 5-45 °C has no effect on the density distribution.
In comparison to the fractal structure obtained for linear
PEGs, dendrimers have a more uniform density distri-
bution. The Stokes-Einstein hard-sphere radii have
also been calculated at the zero concentration limit, and
we have observed an increase of Rh with the dendrimer
generation. However, the results show a slow decrease
in Rh with the temperature for these three dendrimers.
The study of the motion of different parts of the
dendrimers by NMR relaxation time measurements
shows that the terminal protons are more mobile than
the core protons for all dendrimers. The relaxation time
measurements also show a decrease in the mobility for
all protons along with increasing dendrimer generation.
(20) Nyd e´ n, M.; S o¨ derman, O. Macromolecules 1998, 31, 4990-
5002.
(
(
(
21) Waggoner, R. A.; Blum, F. D.; MacElroy, J . M. D. Macromol-
ecules 1993, 26, 6841-6848.
22) Baille, W. E.; Malveau, C.; Zhu, X. X.; Marchessault, R. H.
Biomacromolecules 2002, 3, 214-218.
23) Malveau, C.; Beaume, F.; Germain, Y.; Canet, D. J . Polym.
Sci., Part B: Polym. Phys. 2001, 39, 2781-2792.
(24) Rollet, A.-L.; Simonin, J .-P.; Turq, P.; Gebel, G.; Kahn, R.;
Vandais, A.; No e¨ l, J .-P.; Malveau, C.; Canet, D. J . Phys.
Chem. B 2001, 105, 4503-4509.
(25) Petit, J .-M.; Zhu, X. X.; Macdonald, P. M. Macromolecules
1
996, 29, 70-76.
(26) Masaro, L.; Ousalem, M.; Baille, W. E.; Lessard, D.; Zhu, X.
X. Macromolecules 1999, 32, 4375-4382.
(
(
(
27) Masaro, L.; Zhu, X. X.; Macdonald, P. M. J . Polym. Sci., Part
B: Polym. Phys. 1999, 37, 2396-2403.
28) Masaro, L.; Zhu, X. X. Macromolecules 1999, 32, 5383-
5
390.
29) Yonetake, K.; Masuko, T.; Morishita, T.; Suzuki, K.; Ueda,
M.; Nagahata, R. Macromolecules 1999, 32, 6578-6586.
(30) Uppuluri, S.; Keinath, S. E.; Tomalia, D. A.; Dvornic, P. R.
Macromolecules 1998, 31, 4498-4510.
(31) Scherrenberg, R.; Coussens, B.; van Vliet, P.; Edouard, G.;
Brackman, J .; de Brabander, E. Macromolecules 1998, 31,
4
56-461.
(32) Roover, J .; Zhou, L.-L.; Toporowski, P. M.; van der Zwan, M.;
Iatrou, H.; Hadjichristidis, N. Macromolecules 1993, 26,
4
324-4331.
33) Pan, Y.; Ford, W. T. Macromolecules 1999, 32, 5468-
470.
(
(
5
34) Chai, M.; Niu, Y.; Youngs, W. J .; Rinaldi, P. L. J . Am. Chem.
Soc. 2001, 123, 4670-4678.
(35) Pan, Y.; Ford, W. T. Macromolecules 2000, 33, 3731-
3
738.
(36) Kreider, J . L.; Ford, W. T. J . Polym. Sci., Part A: Polym.
Chem. 2001, 39, 821-832.
(
(
37) Tanner, J . E. J . Chem. Phys. 1970, 52, 2523-2526.
38) Callaghan, P. T.; Trotter, C. M.; J olley, K. W. J . Magn. Reson.
1980, 37, 247-259.
Ack n ow led gm en t. The financial support from the
Natural Sciences and Engineering Research Council
(
NSERC) of Canada and the National Science Founda-
(39) Stilbs, P. Prog. Nucl. Magn. Reson. Spectrosc. 1987, 19, 1-45.
(40) Price, W. S. Concepts Magn. Reson. 1997, 9, 299-336.
tion (USA) is gratefully acknowledged.
(41) Amman, C.; Meier, P.; Merbach, A. E. J . Magn. Reson. 1982,
4
6, 319-322.
Refer en ces a n d Notes
(
42) Waldeck, A. R.; Kuchel, P. W.; Lennon, A. J .; Chapman, B.
(
1) Hariharam, D.; Peppas, N. A. J . Controlled Release 1993, 23,
E. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 30, 39-
1
23-136.
68.
(2) Clericuzio, M.; Parker, W. O.; Soprani, M.; Andrei, M. Solid
State Ionics 1995, 82, 179-192.
(43) De Gennes, P. G. Scaling Concepts in Polymer Physics;
Cornell University Press: Ithaca, NY, 1979.