RSC Advances
Paper
higher value of STYEtOH. The Cu+ surface area was determined 18 A. Yin, X. Guo, K. Fan and W. Dai, ChemCatChem, 2010, 2,
by the content of lanthanum loading. Furthermore, the optimal 206–213.
Cu/SiO2–5La catalyst showed excellent long-term stability, 19 L. Chen, P. Guo, M. Qiao, Y. Run, H. Li, W. Shen, H. Xu and
which could maintain its initial activity for more than 280 h K. Fan, J. Catal., 2008, 257, 172–180.
without any deactivation. The stability may originate from the 20 Z. Wang, Z. Xu, S. Peng, M. Zhang, G. Lu, Q. Chen, Y. Chen
ability of resistance to sintering and transition of surface copper
species by introduction of the lanthanum species.
and G. Guo, ACS Catal., 2015, 5, 4255–4259.
21 Y. Zhao, S. Li, Y. Wang, B. Shan, J. Zhang, S. Wang and X. Ma,
Chem. Eng. J., 2017, 313, 759–768.
22 Y. Wang, Y. Shen, Y. Zhao, J. Lv, S. Wang and X. Ma, ACS
Catal., 2015, 5, 6200–6208.
Conflicts of interest
The authors declare no competing nancial interest.
23 S. Li, Y. Wang, J. Zhang, S. Wang, Y. Xu, Y. Zhao and X. Ma,
Ind. Eng. Chem. Res., 2015, 54, 1243–1250.
24 Y. Zhao, B. Shan, Y. Wang, J. Zhou, S. Wang and X. Ma, Ind.
Eng. Chem. Res., 2018, 57, 4526–4534.
Acknowledgements
We acknowledge Key Research Program of Frontier Sciences, 25 H. Liu, Z. Huang, H. Kang, X. Li, C. Xia, J. Chen and H. Liu,
CAS, (Grant No. QYZDB-SSW-SLH022); The National Natural Appl. Catal., B, 2018, 220, 251–263.
Science Funds (NSFC-NRCT, 51661145012); K. C. Wong 26 C. Ye, C. Guo, C. Sun and Y. Zhang, RSC Adv., 2016, 6,
Education Foundation (GJTD-258 2018-04).
113796–113802.
27 Y. Huang, H. Ariga, X. Zheng, X. Duan, S. Takakusagi,
K. Asakura and Y. Yuan, J. Catal., 2013, 307, 74–83.
28 S. Zhao, H. Yue, Y. Zhao, B. Wang, Y. Geng, J. Lv, S. Wang,
J. Gong and X. Ma, J. Catal., 2013, 297, 142–150.
29 Y. Liu, J. Ding, J. Sun, J. Zhang, J. Bi, K. Liu, F. Kong, H. Xiao,
Y. Sun and J. Chen, Chem. Commun., 2016, 52, 5030–5032.
References
1 X. San, Y. Zhang, W. Shen and N. Tsubaki, Energy Fuels, 2009,
23, 2843–2844.
2 X. Li, X. San, Y. Zhang, T. Ichii, M. Meng, Y. Tan and
N. Tsubaki, Direct Synthesis of Ethanol from Dimethyl 30 Z. Huang, H. Liu, F. Cui, J. Zuo, J. Chen and C. Xia, Catal.
Ether and Syngas over Combined H-Mordenite and Cu/
ZnO Catalysts, ChemSusChem, 2010, 3, 1192–1199.
3 Y. Jiang, Z. Liu, J. Song, I. Chang and J. Zeng, Green Energy &
Environment, 2018, 3, 360–367.
4 P. Cheung, A. Bhan, G. J. Sunley and E. Iglesia, Angew. Chem.,
Int. Ed., 2006, 45, 1617–1620.
Today, 2014, 234, 223–232.
31 X. Zheng, H. Lin, J. Zheng, X. Duan and Y. Yuan, ACS Catal.,
2013, 3, 2738–2749.
32 C. Ye, C. Guo and J. Zhang, Fuel Process. Technol., 2016, 143,
219–224.
33 P. Ai, M. Tan, P. Reubroycharoen, Y. Wang, X. Feng, G. Liu,
G. Yang and N. Tsubaki, Catal. Sci. Technol., 2018, 8, 6441–
6451.
5 H. Zhou, W. Zhu, L. Shi, H. Liu, S. Liu, S. Xu, Y. Ni, Y. Liu,
L. Li and Z. Liu, Catal. Sci. Technol., 2015, 5, 1961–1968.
6 Y. Liu, N. Zhao, H. Xian, Q. Cheng, Y. Tan, N. Tsubaki and 34 H. Yue, Y. Zhao, S. Zhao, B. Wang, X. Ma and J. Gong, Nat.
X. Li, ACS Appl. Mater. Interfaces, 2015, 7, 8398–8403.
Commun., 2013, 4, 2339–2345.
7 H. Xue, X. Huang, E. Ditzel, E. Zhan, M. Ma and W. Shen, Ind. 35 J. Gong, H. Yue, Y. Zhao, S. Zhao, L. Zhao, J. Lv, S. Wang and
Eng. Chem. Res., 2013, 52, 11510–11515. X. Ma, J. Am. Chem. Soc., 2012, 134, 13922–13925.
8 M. A. Nata Santiago, M. A. Sıanchez-Castillo, R. D. Cortright 36 J. Huang, T. Ding, K. Ma, J. Cai, Z. Sun, Y. Tian, Z. Jiang,
and J. A. Dumesic, J. Catal., 2000, 193, 16–28.
9 Z. Huang, F. Cui, J. Xue, J. Zuo, J. Chen and C. Xia, Catal.
Today, 2012, 183, 42–51.
10 D. S. Brands, E. K. Poels and A. Bliek, Appl. Catal., A, 1999,
184, 279–287.
J. Zhang, L. Zheng and X. Li, ChemCatChem, 2018, 10,
3862–3871.
37 C. J. G. Van Der Gri, A. F. H. Wielers, B. P. J. Jogh, J. Van
Beumun, M. De Boer, M. Versluijs-Helder and J. W. Geus,
J. Catal., 1991, 131, 178–189.
´
11 K. Zhong and X. Wang, Int. J. Hydrog. Energy, 2014, 39, 38 A. J. Marchi, J. L. G. Fierro, J. Santamarıa and A. Monzon,
10951–10958. Appl. Catal., A, 1996, 142, 375–386.
12 D. Yang, C. Sararuk, K. Suzuki, Z. Li and C. Li, Chem. Eng. J., 39 C. J. G. Van Der Gri, A. Wielere, A. Mulder and J. W. Geus,
2016, 300, 160–168. Thermochim. Acta, 1990, 171, 95–113.
13 H. Zhao, C. Zuo, D. Yang, C. Li and S. Zhang, Ind. Eng. Chem. 40 X. Dong, H. Zhang, G. Lin, Y. Yuan and K. R. Tsai, Catal.
Res., 2016, 55, 12693–12702. Lett., 2003, 85, 237–246.
14 X. Huang, M. Ma, S. Miao, Y. Zheng, M. Chen and W. Shen, 41 J. J. F. Scholten, A. P. Pijpers and A. M. L. Hustings, Catal.
Appl. Catal., A, 2017, 531, 79–88.
Rev., 1985, 27, 151–206.
15 A. Yin, X. Guo, W. Dai, H. Li and K. Fan, Appl. Catal., A, 2008, 42 Z. Huang and J. Geng, Industrial Catalysis, Chemical
349, 91–99. Industry Press, Beijing, 2nd edn, 2006, pp. 85–88.
16 H. Lin, X. Zheng, Z. He, J. Zheng, X. Duan and Y. Yuan, Appl. 43 A. G. Boudjahem, S. Monteverdi, M. Mercy, D. Ghanbaja and
Catal., A, 2012, 445–446, 287–296. M. Bettahar, Catal. Lett., 2002, 84, 115–122.
17 Z. He, H. Q. Lin, P. He and Y. Yuan, J. Catal., 2011, 277, 54– 44 K. Jun, W. Shen, K. S. R. Rao and K. W. Lee, Appl. Catal., A,
63.
1998, 174, 231–238.
5602 | RSC Adv., 2020, 10, 5590–5603
This journal is © The Royal Society of Chemistry 2020