SPONTANEOUS HYDROLYSIS OF ETHYL FORMATE
71
2. Kirby, J. In: Comprehensive Chemical Kinetics, Vol.
10; Bamford, C. H.; Tipper, C. F. H. Eds.; Elsevier:
Amsterdam, 1972.
3. Jencks, W. P. Catalysis in Chemistry and Enzymology;
Dover: New York, 1987.
4. Yamasaki, Y.; Watanabe, A.; Kakuda, T.; Tokue, I. Int
J Chem Kinet 1998, 30, 47.
5. Stefanidis, D.; Jencks, W. P. J Am Chem Soc 1993, 115,
6045.
6. Sawyer, C. B.; Kirsch, J. F. J Am Chem Soc 1973, 95,
7375.
7. Jencks, W. P.; Carriuolo, J. J Am Chem Soc 1961, 83,
1743.
8. Fedor, L. R.; Bruice, T. C. J Am Chem Soc 1965, 87,
4138.
9. Bunton, C. A.; Fuller, N. A.; Perry, S. G.; Pitman, I. H.
J Chem Soc 1962, 4478.
10. The ⌬H‡ for the acid-catalyzed hydrolysis of ethyl ac-
etate was checked in this laboratory, and a value of 68
kJ/mol resulted, in good agreement with the value of 66
kJ/mol in the NBS Tables for Chemical Kinetics.
11. Thornton, E. K.; Thornton, E. R. In: Transition States
of Biochemical Processes; Gandour, R. D.; Schowen,
R. L. Eds.; Plenum Press: New York, 1978; p 34.
12. Frost, A. A.; Pearson, R. G. Kinetics and Mechanism,
2nd ed.; John Wiley & Sons: New York, 1963; pp 327–
334.
been interpreted in terms of freezing of the rotational
degree of freedom of the methyl group in acetates.
This rigidity may be due to a greater degree of solvent
immobilization for acetate TS as compared with for-
mate TS. Basically, the same result is observed when
comparing the saponification of ethyl acetate and ␥-
butyrolactone [12], because there is no rotating methyl
group in the lactone ring.
Use of Eyring’s equation with ⌬H‡ ϭ 105 Ϯ 5 kJ/
1
1
mol and ⌬S‡ ϭ Ϫ69 J KϪ /mol (Ϫ48 J KϪ /mol – 21
J KϪ /mol) yields k1 ϭ 10Ϫ
sϪ , a number in
1
9.2
Ϯ
0.8
1
agreement with the estimate of Skrabal.
A similar result is obtained on consideration of the
effect of replacing a hydrogen atom by a methyl group
in the hydration of H2CO and CH3CHO, and of
HCO2Me and CH3CO2Me to give the corresponding
tetrahedral gem-diols. This structural effect has been
estimated to be ␦⌬GЊ Ϸ ␦⌬G‡ ϭ 20 kJ/mol [13,20–
22]. The specific rate for the neutral hydrolysis of
CH3CO2Et at 25ЊC can then be calculated by correct-
ing the value for HCO2Et by the magnitude of the
stereoelectronic effect due to the H/CH3 replacement:
1
k1(CH3CO2Et) ϭ 1.9 ϫ 10Ϫ6 sϪ
ϫ exp (Ϫ20 ϫ 103/RT)
13. Guthrie, J. P. J Am Chem Soc 1973, 95, 6999.
14. Bunton, C. A. Fendler, J. H. J Am Chem Soc 1965, 30,
1365.
1
k1(CH3CO2Et) ϭ 10Ϫ9.2 sϪ
15. Talbot, R. J. E. In: Comprehensive Chemical Kinetics,
Vol. 10; Bamford, C. H.; Tipper, C. F. H. Eds.; Elsevier:
Amsterdam, 1972.
16a. Davis, K. R.; Hogg, J. L. J Org Chem 1983, 48, 1041;
16b. Gopalakrishnan, G.; Hogg, J. L. J Org Chem
1984, 49, 3161.
The results obtained for the spontaneous catalyzed
hydrolysis of HCO2Et are consistent with the behavior
of the much less reactive acetate analogue. This con-
sistency is an indirect way to check on the validity of
the rate constants and activation parameters deter-
mined in this study.
17. Haak, J. R.; Engberts, J. B. F. N. J Am Chem Soc 1986,
108, 1705.
18. Venkatasubban, K. S.; Bush, M.; Ross, E.; Schultz, M.;
Garza, O. J Org Chem 1998, 63, 6115.
The author wishes to express his gratitude to Prof. William
P. Jencks and to Dr. Dimitros Stefanidis for their collegial
assistance, concerning the magnitude of the rate constants
in this work.
19a. Leffler, J. E.; Grunwald, E. Rates and Equilibria of
Organic Reactions; John Wiley & Sons: New York,
1963; 19b. Schowen, R. L. J Pharm Sci 1967, 56, 931.
20. Critchlow J. E. J Chem Soc Faraday Trans 1 1972, 68,
1774.
21. Williams, I. H.; Spangler, D.; Femec, D. A.; Maggiora,
G. M.; Schowen, R. L. J Am Chem Soc 1983, 105, 31.
22. Wolfe, S.; Kim, C. K.; Yang, K.; Weinberg, N.; Shi, Z.
J Am Chem Soc 1995, 117, 4240.
23. Jonnalagadda, S. B.; Nattar, K. Int J Chem Kinet 1999,
31, 83.
BIBLIOGRAPHY
1. Laughton, P. M.; Robertson, R. E. In: Solvent-Solute
Interactions; Coetzee, J. F.; Ritchie, C. D. Eds.; Marcel
Dekker: New York, 1969.