Dehydration of Carbohydrates to 5-Hydroxymethylfurfural in Ionic Liquids
Dehydration of other carbohydrates
tion in producing HMF by dehydration of the carbohy-
drates.
The N3P3Cl6/[Bmim]Cl catalytic system was also
used to catalyze the dehydration of other carbohydrates,
and the results are illustrated in Figure 6. As expected,
the sucrose (Scheme 4a) and inulin (Scheme 4b) with
fructose unit in the molecular structures gave moderate
HMF yields of 47.9% and 52.4%, respectively. Reaction
times for reaching the maximum HMF yield for sucrose
and inulin were 30 min and 60 min, respectively. How-
ever, the catalyst system had poor activity for the dehy-
dration of glucose (Scheme 4c) to produce HMF, and
the yield was only 1.3% after a reaction time of 120
min.
Acknowledgement
This work was supported by National Natural Sci-
ence Foundation of China (21003133, 21133009,
21021003).
References
[1] (a) Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.;
Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P., Jr.; Leak,
D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.;
Tschaplinski, T. Science 2006, 311, 484; (b) Róman-Leshkov, Y.;
Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Natrue 2007, 447, 982; (c)
Li, J.; Ding, D. J.; Deng, L.; Guo, Q. X.; Fu, Y. ChemSusChem 2012,
5, 1313; (d) Xue, J.; Cui, F.; Huang, Z.; Zuo, J.; Chen, J.; Xia, C.
Chin. J. Chem. 2011, 29, 1319.
50
[2] (a) Mettler, M. S.; Mushrif, S. H.; Javadekar, A. D.; Vlachos, D. G.;
Dauenhauer, P. J. Energy Environ. Sci. 2012, 5, 5414; (b) Tong, X.;
Ma, Y.; Li, Y. Appl. Catal. A: Gen. 2010, 385, 1; (c) Zhou, C. H.;
Xia, X.; Lin, C. X.; Tong, D. S.; Beltramin, J. Chem. Soc. Rev. 2011,
40, 5588; (d) Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538; (d)
Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538; (e) Gong, Y.; Lin, L.;
Zhang, B. Chin. J. Chem. 2012, 30, 327.
[3] (a) Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Angew. Chem., Int.
Ed. 2007, 46, 7164; (b) Huber, G. W.; Corma, A. Angew. Chem., Int.
Ed. 2007, 46, 7184; (c) Kamm, B. Angew. Chem., Int. Ed. 2007, 46,
5056; (d) Metzger, J. O. Angew. Chem., Int. Ed. 2006, 45, 696; (e)
Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044; (f)
Chheda, J. N.; Dumesic, J. A. Catal. Today 2007, 123, 59; (g) Mas-
cal, M.; Nikitin, E. B. Angew. Chem., Int. Ed. 2008, 47, 7924; (h)
Simonetti, D. A.; Dumesic, J. A. ChemSusChem 2008, 1, 725; (i)
West, R. M.; Liu, Z. Y.; Peter, M.; Dumesic, J. A. ChemSusChem
2008, 1, 417.
Inulin
Sucrose
Glucose
40
30
20
10
0
0
20
40
60
80
100
120
Time/min
Figure 6 Dehydration of different carbohydrates. Reaction
conditions: 0.1 g carbohydrates, 5 mg N3P3Cl6, 2 g [Bmim]Cl,
reaction temperature 80 ℃.
[4] (a) Bicker, M.; Endres, S.; Ott, L.; Vogel, H. C. J. Mol. Catal. A:
Chem. 2005, 239, 151; (b) Benoit, M.; Brissonnet, Y.; Guélou, E.;
Vigier, K. D. O.; Barrault, J.; Jérôme, F. ChemSusChem 2010, 3,
1304; (c) Ilgen, F.; Ott, D.; Kralisch, D.; Reil, C.; Palmberger, A.;
König, B. Green Chem. 2009, 11, 1948; (d) Vigier, K. D. O.; Ben-
guerba, A.; Barrault, J.; Jérôme, F. Green Chem. 2012, 14, 285; (e)
Qi, X.; Watanabe, M.; Aida, T. M.; Smith, R. L. Bioresource Tech-
nol. 2012, 109, 224; (f) Zhang, Z.; Liu, B.; Zhao, Z. K. Carbohyd.
Polym. 2012, 88, 891.
[5] (a) Chheda, J. N.; Róman-Leshkov, Y.; Dumesic, J. A. Green Chem.
2007, 9, 342; (b) Sievers, C.; Musin, I.; Marzialetti, T.; Olarte, M. B.
V.; Agrawal, P. K.; Jones, C. W. ChemSusChem 2009, 2, 665.
[6] Ståhlberg, T.; Sørensen, M. G.; Riisager, A. Green Chem. 2010, 12,
321.
Scheme 4 The structures of sucrose (a), inulin (b) and glucose
(c)
HO
HO
OH
O
O
HO
HO
HO
CH2
HO
OH
OH
HO
HO
O
HO
O
HO
O
HO
O
O
HO
HO
HO
OH
OH
CH
HO
O
O
HO
CH2
2
HO
HO
HO
OH
OH
O
O
O
n
m
HO
OH
OH
OH
OH
b
OH
OH
OH
c
a
[7] Hu, S. Q.; Zhang, Z. F.; Song, J. L.; Zhou, Y. X.; Han, B. X. Green
Chem. 2009, 11, 1746.
Conclusions
[8] (a) Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science 2007,
316, 1597; (b) Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009,
131, 1979; (c) Yong, G.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int.
Ed. 2008, 47, 9345; (d) Li, C.; Zhang, Z.; Zhao, Z. K. Tetrahedron
Lett. 2009, 50, 5403; (e) Degirmenci, V.; Pidko, E. A.; Magusin, P.
C. M. M.; Hensen, E. J. M. ChemCatChem 2011, 3, 969; (f) Chen,
T.; Lin, L. Chin. J. Chem. 2010, 28, 1773.
[9] Chan, J. Y. G.; Zhang, Y. ChemSusChem 2009, 2, 731.
[10] Zhang, Z.; Wang, Q.; Xie, H.; Liu, W.; Zhao, Z. K. ChemSusChem
2011, 4, 131.
In summary, organic molecules N3P3Cl6, C3N6H3Cl3,
and NBS are very effective catalysts for the dehydration
of fructose to produce HMF using [Bmim]Cl as the sol-
vent, and the N3P3Cl6 has the highest activity among
them. Very high yield of 92.8% has been achieved at 80
℃
with a reaction time of 20 min, and the
N3P3Cl6/[Bmim]Cl catalytic system can be reused at
least five times without considerable reduction of the
activity. In addition, the catalytic system can also pro-
mote the dehydration of sucrose and inulin to produce
HMF efficiently. We believe that the simple, highly
effective catalytic system has great potential of applica-
[11] Yang, Y.; Hu, C. W.; Abu-Omar, M. M. Green Chem. 2012, 14,
509.
[12] (a) Hansen, T. S.; Mielby, J.; Riisager, A. Green Chem. 2011, 13,
109; (b) Ståhlberg, T.; Rodriguez-Rodriguez, S.; Fristrup, P.; Riis-
Chin. J. Chem. 2012, 30, 2079—2084
© 2012 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2083