Journal of the American Chemical Society
Communication
In summary, the relative resistance of the trimethylsulfonium
ion to hydrolysis makes it possible to measure rates of methyl
(9) Deng, H.; McMahon, S. A.; Eustaq
Naismith, J. H.; O’Hagan, D. ChemBioChem 2009, 10, 2455.
(10) Pearson, R. G.; Sobel, H.; Songstad, J. J. Am. Chem. Soc. 1968,
́
uio, A. S.; Moore, B. S.;
−
−
−
−
transfer to I , Br , Cl , and F , in water at elevated
temperatures. The resulting second-order rate constants,
obtained by extrapolation of Arrhenius plots to 25 °C, imply
that fluorinase and chlorinase enhance the rates of alkyl halide
9
0, 319.
(
(
(
11) Swain, C. G. S.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 246.
12) Pocker, Y.; Parker, A. J. J. Org. Chem. 1966, 31, 1526.
13) Cadicamo, C. D.; Courtieu, J.; Deng, H.; Meddour, A.;
1
5
17
formation by factors of 2 × 10 - and 1 × 10 -fold,
respectively. These rate enhancements, achieved without the
assistance of metals, cofactors, or general acid−base catalysis,
give some indication of how much can be accomplished by
juxtaposition and desolvation of two substrates at an enzyme’s
O’Hagan, D. ChemBioChem 2004, 5, 685.
(
14) Eustaquio, A. S.; Harle, J.; Noel, J. P.; Moore, B. S.
́
ChemBioChem 2008, 9, 2215.
(15) Dzingeleski, G. D.; Wolfenden, R. Biochemistry 1993, 32, 9143.
(16) In the case of catecholamine O-methyltransferase, Schowen and
his associates estimated a rate enhancement of 3 × 10 -fold at 37 °C:
Mihel, I.; Knipe, J. O.; Coward, J. K.; Schowen, R. L. J. Am. Chem. Soc.
2
4
16
active site. It is also possible that, following substrate binding,
the reactants are compressed as they proceed toward the
transition state, as has been demonstrated in the case of
1
979, 101, 4349.
16
(17) Stockbridge, R. B.; Wolfenden, R. J. Biol. Chem. 2009, 284,
catechol O-methyltransferase.
2
2747.
(
(
(
18) Schroeder, G. K.; Wolfenden, R. Biochemistry 2007, 46, 4037.
19) Hughes, E. D. I.; Ingold, C. K. J. Chem. Soc. 1935, 244.
20) Vincent, M. A.; Hillier, I. H. Chem. Commun. 2005, 5902.
ASSOCIATED CONTENT
■
*
S
Supporting Information
H NMR spectrum of a reaction mixture. Plots of kobs vs
1
(21) Swain, C. G. B.; Burrows, W. D.; Schowen, B. J. J. Org. Chem.
1
968, 33, 2534.
[
NaBF ] and [HCl]. Arrhenius plots for the decomposition of
4
(
(
22) Swain, C. G. K.; Kaiser, L. E. J. Am. Chem. Soc. 1958, 80, 4089.
23) Stockbridge, R. B.; Wolfenden, R. Chem. Commun. 2010, 46,
+
−
−
−
−
Me S with H O, F , Br , I , and HO . Plot of log(k ) vs
3
2
2
nucleophilicity constant for the halides. A plot of decom-
4
306.
+
−
3
6
(24) For a lucid review of these issues: Schowen, , R. L. Transition
States of Biological Processes; Fandour, , R. D., Schowen, , R. L., Eds.;
Plenum Press: New York, 1978,; pp 77−−114.
AUTHOR INFORMATION
Present Addresses
†
Department of Biochemistry, University of Wisconsin at
Madison, Madison, WI 53706.
§
Afton Chemical Corporation, Richmond, VA 23219.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by National Institutes of Health
Grant #GM-18325.
REFERENCES
■
(
1) O’Hagan, D.; Schaffrath, C.; Cobb, S. L.; Hamilton, J. T. G.;
Murphy, C. D. Nature 2004, 427, 561.
(
2) Eustaq
Biol. 2008, 4, 69.
3) Schmidberger, J. W.; James, A. B.; Edwards, R.; Naismith, J. H.;
O’Hagan, D. Angew. Chem., Int. Ed. 2010, 49, 3646.
́
uio, A. S.; Pojer, F.; Noel, J. P.; Moore, B. S. Nat. Chem.
(
+
(
4) Products of methylation by SAM are limited by the nature of its
its three S-substituents. Other enzymes escape those limitations by
II
employing flavin or Fe cofactors to conduct oxidative halogenation of
their substrates in the biosynthesis of a variety of natural products:
Vaillancourt, F. H.; Yin, J.; Walsh, C. T. Proc. Natl. Acad. Sci. U.S.A.
2
(
005, 102, 1011 and references cited therein).
+
5) It should also be noted that the decomposition of SAM itself is
+
significantly more complex than that of Me S and proceeds relatively
3
rapidly by several competing pathways in neutral solution: Hoffman, J.
L. Biochemistry 1986, 25, 1444. Iwig, D. F.; Booker, S. J. Biochemistry
2
(
2
(
1
(
004, 43, 3496.
6) Glew, D. N.; Moelwyn-Hughes, E. A. Proc. R. Soc. Lond. A 1952,
11, 254.
7) Senn, H. M.; O’Hagan, D.; Thiel, W. J. Am. Chem. Soc. 2005, 127,
3643.
8) Zhu, X. F.; Robinson, D. A.; McEwan, A. R.; O’Hagan, D.;
Naismith, J. H. J. Am. Chem. Soc. 2007, 129, 14597.
1
4475
dx.doi.org/10.1021/ja406381b | J. Am. Chem. Soc. 2013, 135, 14473−14475