10.1002/anie.201708526
Angewandte Chemie International Edition
COMMUNICATION
Trujillo, D. B. Amabilino, R. Mas-Ballesté, F. Zamora, J. Puigmartí-Luis,
Chem. Commun. 2016, 52, 9212–9215; e) G. Lin, H. Ding, D. Yuan, B.
Wang, C. Wang, J. Am. Chem. Soc. 2016, 138, 3302–3305; f) P. J.
Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053–
3063; g) X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010–
6022; h) N. Huang, P. Wang, D. Jiang, Nat. Rev. Mater. 2016, 1, 16068.
a) S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem.
Soc. 2008, 130, 11580–11581; b) C. J. Doonan, D. J.
Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem.
2010, 2, 235–238; c) Y. Zeng, R. Zou, Z. Luo, H. Zhang, X. Yao, X. Ma,
R. Zou, Y. Zhao, J. Am. Chem. Soc. 2015, 137, 1020–1023.
supported by a change in thickness for the initial and uniform
sheets from around 500 to 100 nm, respectively. Hence, we
propose that the spontaneous scrolling into tubular
arrangements (red arrows in Figure 5c) minimizes destabilizing
interactions with solvent molecules, as it was previously shown
for supramolecular nanotubes[19] and microporous polymers.[20]
This assumption is also supported by similar wall thicknessess
for the microtubes and the uniform sheets. Subsequently, well-
defined uniform nanotubes are generated via dynamic imine
formation of unreacted aldehyde and amino groups present at
the edges.
In conclusion, we have demonstrated the successful
implementation of DPP and TPP chromophores into one single
conjugated COF via reversible imine condensations. UV/Vis
studies revealed a significant redshift after framework formation
that was attributed to enhanced conjugation and delocalization
along and across the COF sheets. Remarkably, DPP-TAPP-
COF crystallites self-assemble into microtubular aggregates with
narrow size distribution as evidenced by SEM and STEM
microscopy. Time-dependent studies support the hypothesis that
the microtubes originate from rolled-up crystallite sheets. These
findings pave the way for fascinating future experiments on
single microtubes, as well as the inclusion of suitable guest
molecules or even larger nanostructures thus allowing for an
additional fine-tuning of materials properties.
[5]
[6]
[7]
a) C. R. DeBlase, K. E. Silberstein, T.-T. Truong, H. D. Abruña, W. R.
Dichtel, J. Am. Chem. Soc. 2013, 135, 16821–16824; b) C. R. Mulzer, L.
Shen, R. P. Bisbey, J. R. McKone, N. Zhang, H. D. Abruña, W. R.
Dichtel, ACS Cent. Sci. 2016, 2, 667–673; c) V. S. Vyas, V. W. Lau, B.
V. Lotsch, Chem. Mater. 2016, 28, 5191–5204.
a) Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, Y. Yan, Angew. Chem.
Int. Ed. 2014, 53, 2878–2882; Angew. Chem. 2014, 126, 2922–2926; b)
H. Xu, J. Gao, D. Jiang, Nat. Chem. 2015, 7, 905–912; c) S. Lin, C. S.
Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris,
D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208–
1213; d) H.-S. Xu, S.-Y. Ding, W.-K. An, H. Wu, W. Wang, J. Am. Chem.
Soc. 2016, 138, 11489–11492.
[8]
[9]
a) S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai, D. Jiang, J. Am. Chem.
Soc. 2013, 135, 17310–17313; b) S. Y. Ding, M. Dong, Y. W. Wang, Y.
T. Chen, H. Z. Wang, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2016, 138,
3031–3037; c) Z. Li, Y. Zhang, H. Xia, Y. Mu, X. Liu, Chem. Commun.
2016, 52, 6613–6616.
a) X. Feng, L. Chen, Y. Honsho, O. Saengsawang, L. Liu, L. Wang, A.
Saeki, S. Irle, S. Seki, Y. Dong, D. Jiang, Adv. Mater. 2012, 24, 3026–
3031; b) M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A.
Hartschuh, P. Knochel, T. Bein, Angew. Chem. Int. Ed. 2013, 52, 2920–
2924; Angew. Chem. 2013, 125, 2992–2996.
Acknowledgements
[10] N. A. A. Zwaneveld, R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D.
Bertin, L. Porte, J. Am. Chem. Soc. 2008, 130, 6678–6679.
[11] S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang, Angew. Chem. Int. Ed. 2008,
47, 8826–8830; Angew. Chem. 2008, 120, 8958–8962.
Financial support from the Fonds der Chemischen Industrie
(Liebig fellowship for F.B.) and the Bavarian Research Program
‘Solar Technologies Go Hybrid’ is gratefully acknowledged. T.B.
thanks the DFG for support through the research cluster
Nanosystems Initiative Munich (NIM). The research has also
received funding from the European Research Council under the
European Union's Seventh Framework Programme (FP7/2007-
2013)/ERC Grant Agreement no. 321339.
[12] W. Huang, Y. Jiang, X. Li, X. Li, J. Wang, Q. Wu, X. Liu, ACS Appl.
Mater. Interfaces 2013, 5, 8845–8849.
[13] a) H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. Côté, R. E.
Taylor, M. O'Keeffe, O. M. Yaghi, Science 2007, 316, 268–272; b) S. B.
Kalidindi, C. Wiktor, A. Ramakrishnan, J. Weßing, A. Schneemann, G.
Van Tendeloo, R. A. Fischer, Chem. Commun. 2013, 49, 463–465; c) C.
Qian, S.-Q. Xu, G.-F. Jiang, T.-G. Zhan, X. Zhao, Chem. Eur. J. 2016,
22, 17784–17789.
Keywords: covalent organic frameworks • diketopyrrolopyrroles
• porphyrins • imines • microtubes
[14] a) S. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S.
Verma, R. Banerjee, Nat. Commun. 2015, 6, 6786; b) A. Halder, S.
Kandambeth, B. P. Biswal, G. Kaur, N. C. Roy, M. Addicoat, J. K.
Salunke, S. Banerjee, K. Vanka, T. Heine, S. Verma, R. Banerjee,
Angew. Chem. Int. Ed. 2016, 55, 7806–7810; Angew. Chem. 2016, 128,
7937–7941.
[1]
a) T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813–817; b) G.
Zhang, O. Presly, F. White, I. M. Oppel, M. Mastalerz, Angew. Chem.
Int. Ed. 2014, 53, 1516–1520; Angew. Chem. 2014, 126, 1542–1546; c)
S. Klotzbach, F. Beuerle, Angew. Chem. Int. Ed. 2015, 54, 10356–
10360; Angew. Chem. 2015, 127, 10497–10502; d) F. Würthner, C. R.
Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Chem.
Rev. 2016, 116, 962–1052.
[15] P. Pachfule, S. Kandmabeth, A. Mallick, R. Banerjee, Chem. Commun.
2015, 51, 11717–11720.
[16] a) S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L.
Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O.
M. Yaghi, Chem. Mater. 2011, 23, 4094–4097; b) A. Nagai, X. Chen, X.
Feng, X. Ding, Z. Guo, D. Jiang, Angew. Chem. Int. Ed. 2013, 52,
3770–3774; Angew. Chem. 2013, 125, 3858–3862.
[2]
a) G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418–2421; b)
J.-F. Lutz, J.-M. Lehn, E. W. Meijer, K. Matyjaszewski, Nat. Rev. Mater.
2016, 1, 16024; c) X. Zhou, Q. Jin, L. Zhang, Z. Shen, L. Jiang, M. Liu,
Small 2016, 12, 4743–4752.
[17] a) R. B. Zerdan, N. T. Shewmon, Y. Zhu, J. P. Mudrick, K. J. Chesney,
J. Xue, R. K. Castellano, Adv. Funct. Mater. 2014, 24, 5993-6004; b) M.
Grzybowski, D. T. Gryko, Adv. Optical Mater. 2015, 3, 280–320; c) M.
Stolte, S.-L. Suraru, P. Diemer, T. He, C. Burschka, U. Zschieschang,
H. Klauk, F. Würthner, Adv. Funct. Mater. 2016, 26, 7415–7422.
[18] Q. Ge, J. Ran, J. Miao, Z. Yang, T. Xu, ACS Appl. Mater. Interfaces
2015, 7, 28545–28553.
[3]
[4]
a) L. B. Gower, Chem. Rev. 2008, 108, 4551–4627; b) H. Cölfen, Nat.
Mater. 2010, 9, 960–961.
a) A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O.
M. Yaghi, Science 2005, 310, 1166–1170; b) E. L. Spitler, W. R. Dichtel,
Nat. Chem. 2010, 2, 672–677; c) L. Ascherl, T. Sick, J. T. Margraf, S. H.
Lapidus, M. Calik, C. Hettstedt, K. Karaghiosoff, M. Döblinger, T. Clark,
K. W. Chapman, F. Auras, T. Bein, Nat. Chem. 2016, 8, 310–316; d) D.
Rodriguez-San-Miguel, A. Abrishamkar, J. A. R. Navarro, R. Rodriguez-
This article is protected by copyright. All rights reserved.