1810
A. Lu¨tzen et al. / Tetrahedron Letters 43 (2002) 1807–1811
These results clearly indicate that the new bis(resor-
cinarene) 1 indeed shows heterotropic positive co-oper-
ative allosteric behaviour and we are currently
exploring its binding properties towards other non-
polar substrates like biphenyls.
Lett. 1995, 36, 9321–9324; (d) Redman, J. E.; Beer, P.
D.; Dent, S. W.; Drew, M. G. B. Chem. Commun.
1998, 231–232; (e) Beer, P. D.; Dent, S. W. Chem.
Commun. 1998, 825–826; (f) Watanabe, S.; Higashi, N.;
Kobayashi, M.; Hamanaka, K.; Takata, Y.; Yoshida,
K. Tetrahedron Lett 2000, 41, 4583–4586; (g) Cooper, J.
B.; Drew, M. G. B.; Beer, P. D. J. Chem. Soc., Dalton
Trans. 2000, 2721–2728; (h) Liu, Y.; Chen, Y.; Liu,
S.-X.; Guan, X.-D.; Wada, T.; Inoue, Y. Org. Lett.
2001, 3, 1657–1660; (i) Liu, Y.; Chen, Y.; Li, B.; Wada,
T.; Inoue, Y. Chem. Eur. J. 2001, 7, 2528–2535; related
reviews: (a) Linton, B.; Hamilton, A. D. Chem. Rev.
1997, 97, 1669–1680; (b) Haider, J. M.; Pikramenou, Z.
Eur. J. Inorg. Chem. 2001, 189–194; (c) Shinkai, S.;
Ikeda, M.; Sugasaki, A.; Takeuchi, M. Acc. Chem. Res.
2001, 34, 494–503.
Acknowledgements
We are indebted to Professor Dr. Peter Ko¨ll for provid-
ing us with excellent working conditions. We thank
Professor Dr. Ju¨rgen O. Metzger for the opportunity to
perform the ESI MS experiments. Additional financial
support from the Fonds der Chemischen Industrie is
gratefully acknowledged.
5. Molecular modelling was performed using commercially
available PC Spartan Pro software package from
Wavefunction.
References
6. Garelli, N.; Vierling, P. J. Org. Chem. 1992, 57, 3046–
3051.
7. Tetrabromo substituted resorcinarene and cavitand
1. von Bayer, A. Ber. 1872, 5, 25–26. Although he did not
know the real structure of this compound by that time,
which was finally elucidated by Erdtman et al. in 1968
(Erdtman, H.; Ho¨gberg, S.; Abrahamsson, S.; Nilsson,
B. Tetrahedron Lett. 1968, 9, 1679–1682).
2. (a) Vo¨gtle, F. Supramolekulare Chemie; Teubner: Stutt-
gart, 1992; (b) Lehn, J.-M. Supramolecular Chemistry;
VCH: Weinheim, 1995; (c) Steed, J. W.; Atwood, J. L.
(although
R
was not n-C11H23 but n-C5H11 or
C2H4Ph): Bryant, J. A.; Blanda, M. T.; Vincenti, M.;
Cram, D. J. J. Am. Chem. Soc. 1991, 113, 2167–2172.
8. Monohydroxyl substituted resorcinarene 5a: Irwin, J.
L.; Sherburn, M. S. J. Org. Chem. 2000, 65, 5846–5848.
9. Yields for resorcinarenes with R=n-C11H23 were 89%
(resorcinarene), 73% (tetrabromoresorcinarene), 84%
(tetrabromocavitand 4a), and 48% (5a). Yields for
resorcinarenes with R=n-C5H11 were 71% (resor-
cinarene), 46% (tetrabromoresorcinarene), and 91% (tet-
rabromo-cavitand 4b).
Supramolecular Chemistry; John Wiley
&
Sons:
Chichester, 2000.
3. Some reviews and books: (a) Gutsche, C. D. Calixare-
nes; Royal Society of Chemistry: Cambridge, 1989; (b)
Vicens, J.; Bo¨hmer, V., Eds.; Calixarenes. A Versatile
Class of Macrocyclic Compounds; Kluwer: Dodrecht,
1991; (c) Cram, D. J. Nature 1992, 356, 29–36; (d)
Cram, D. J.; Cram, J. M. Container Molecules and
Their Guests; Royal Society of Chemistry: Cambridge,
1994; (e) Sherman, J. C. Tetrahedron 1995, 51, 3395–
3422; (f) Bo¨hmer, V. Angew. Chem. 1995, 107, 785–818;
(g) Timmerman, P.; Verboom, W.; Reinhoudt, D. N.
Tetrahedron 1996, 52, 2663–2704; (h) Walliman, P.;
Marti, T.; Fu¨rer, A.; Diederich, F. Chem. Rev. 1997,
97, 1567–1608; (i) Chapman, R. G.; Sherman, J. C.
Tetrahedron 1997, 53, 15911–15945; (j) Higler, I.; Tim-
merman, P.; Verboom, W.; Reinhoudt, D. N. Eur. J.
Org. Chem. 1998, 2689–2702; (k) Rudkevich, D. M.;
Rebek, J., Jr. Eur. J. Org. Chem. 1999, 1991–2005; (l)
Jasat, A.; Sherman, J. C. Chem. Rev. 1999, 99, 931–
967; (m) Warmuth, R.; Yoon, J. Acc. Chem. Res. 2001,
34, 95–105.
4. Probably the first examples were reported by Rebek et
al., e.g. (a) Rebek, J., Jr.; Trend, J. E.; Wattley, R. V.;
Chakravorti, S. J. Am. Chem. Soc. 1979, 101, 4333–
4337; (b) Rebek, J., Jr.; Wattley, R. V. J. Am. Chem.
Soc. 1980, 102, 4853–4854; (c) Rebek, J., Jr. Acc.
Chem. Res. 1984, 17, 258–264; (d) Rebek, J., Jr.; Cos-
tello, T.; Marshall, L.; Wattley, R. V.; Gadwood, R.
C.; Onan, K. J. Am. Chem. Soc. 1985, 107, 7481–7487;
more recent examples from other groups: (a) Beer, P.
D.; Rothin, A. S. J. Chem. Soc., Chem. Commun. 1988,
52–54; (b) Wilson, S. R.; Yasmin, A.; Wu, Y. J. Org.
Chem. 1992, 57, 6941–6945; (c) Chambron, J.-C.; Heitz,
V.; Sauvage, J.-P.; Pierre, J.-L.; Zurita, D. Tetrahedron
10. NMR experiments were recorded on a Bruker DRX
500 at 300 K. Assignments were carried out according
to 1H, 13C, H,H COSY, HMQC, and HMBC NMR
experiments, e.g. 1a: 1H NMR (500.1 MHz, CDCl3) l:
9.08 (s, 2H, Hpyridyl), 8.92 (d, 2H, 3J=5.6 Hz, Hpyridyl),
8.00 (d, 2H, 3J=5.6 Hz, Hpyridyl), 7.13 (s, 4H, Harom.),
7.12 (s, 2H, Harom.), 7.10 (s, 2H, Harom.), 6.57 (s, 2H,
Harom.), 6.46 (s, 4H, Harom.), 5.74 (d, 4H, 2J=−7.1 Hz,
Hacetal), 5.58 (d, 4H, 2J=−7.1 Hz, Hacetal), 4.75 (t, 4H,
3J=8.2 Hz, Hbenzyl), 4.73 (t, 4H, 3J=8.2 Hz, Hbenzyl),
2
2
4.66 (d, 4H, J=−7.1 Hz, Hacetal), 4.37 (d, 4H, J=−7.1
Hz, Hacetal), 2.28–2.18 (m, 16H, Halkyl), 1.44–1.25 (m,
144H, Halkyl), 0.88 (t, 24H, 3J=7.1 Hz, Halkyl); 13C
NMR (125.8 MHz, CDCl3) l: 14.1, 22.7, 27.9, 29.4,
29.7, 29.8, 29.9, 31.9 (Calkyl), 36.4, 36.6 (Cbenzyl), 99.3,
99.7 (Cacetal), 116.8, 116.9, 117.8, 120.4, 120.5 (Carom.),
121.3, 123.9 (Cpyridyl), 135.6 (Carom.), 137.1 (Cpyridyl),
137.6, 138.3, 138.8, 139.2, 146.8 (Carom.), 150.4, 154.0
(Cpyridyl), 154.6, 155.0, 156.3 (Carom.), 164.5 (Cester).
11. CI MS (iso-butane) 1a: 2570 ([M+Na]+) and ESI MS
1b: 1875.3 ([M+H]+) with matching isotope patterns. CI
MS were recorded on a Finnigan MAT 95 with datasys-
tem DEC-Station 5000. ESI MS were taken on a Ther-
moquest Finnigan LCQ using Excalibur Software from
Thermoquest Finnigan.
12. Compound 6 was prepared from 1-adamantylcarboxylic
acid and 1-hydroxyadamantane following Garelli’s pro-
cedure (see Ref. 6).