Journal of the American Chemical Society
Mechanistically, we envision oxidation of the vinyl ether via
Page 4 of 5
pounds. This materials is available free of charge via the Internet at
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
electron transfer to the excited pyrylium cation to give the vinyl
ether radical cation (e.g., A B, Scheme 3). Notably, the
propagating radical cation chain end likely forms a dynamic
redox couple with the reduced pyrylium species. The reversibil-
ity would manifest an ability for the radical cation chain end to
be reduced to terminate polymerization, and then oxidize and
reinitiate upon exposure to light. We investigated this temporal
control by monitoring the polymerization with intermittent
exposure to blue LED light. As shown in Figure 4, polymeriza-
tion ceased in the dark and was reinitiated upon exposure to
blue light. Specifically, we observed little to no further conver-
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Financial support of this research by the University of Washington.
We are grateful to Professor Robert H. Grubbs (California Institute
of Technology) for helpful discussions and encouragement, and to
Professors Dean Waldow (Pacific Lutheran University) and Chris-
tine Luscombe (University of Washington) for assistance with GPC
analyses.
1
sion of monomer in the dark as determined by H NMR spec-
troscopy, and no significant changes in M as judged by GPC
n
analysis. This suggested to us that the pyrylium cation and vinyl
ether form a dynamic redox couple and that the radical cation
chain end is undergoes oxidation-reduction cycles during the
polymerization. Furthermore, the correlation between % con-
REFERENCES
version and increasing M during the alternating light/dark
n
(
1) (a) Schrock, R. R. Acc. Chem. Res. 2014, 47, 2457–2466. (b)
cycles is consistent with chain end activation/deactivation cy-
cles, as opposed to photo-mediated initiation of new polymer
chains upon re-exposure to light.
Sutthasupa, S.; Shiotsuki, M.; Sanda, F. Polym. J. 2010, 42, 905–915. (c)
Bielawski, C. W.; Grubbs, R. H. Prog. Polym. Sci. 2007, 32, 1–29. (d)
Rosebrugh, L. E.; Marx, V. M.; Keitz, B. K.; Grubbs, R. H. J. Am. Chem.
Soc. 2013, 135, 10032–10035. (e) Jeong, H.; Kozera, D. J.; Schrock, R.
R.; Smith, S. J.; Zhang, J.; Ren, N.; Hillmyer, M. A. Organometallics
100
15.0
90
80
70
60
50
40
30
20
10
0
2
013, 32, 4843–4850. (f) Forrest, W. P.; Axtell, J. C.; Schrock, R. R.
9
.2
Organometallics 2014, 33, 2313–2325.
10.1
(2) (a) Chauvin, Y. Angew. Chem. Int. Ed. 2006, 45, 3740–3747. (b)
Schrock, R. R. Angew. Chem. Int. Ed. 2006, 45, 3748–3759. (c) Grubbs,
R. H. Angew. Chem. Int. Ed. 2006, 45, 3760–3765.
7.5
6.4
6.7
6
.6
(
3) Mol, J. C. J. Mol. Catal. A: Chem. 2004, 213, 39–45.
4.6
(4) Vougioukalakis, G. C. Chem. Eur. J. 2012, 18, 8868–8880.
(5) Alcaide, B.; Almendros, P.; Luna, A. Chem. Rev. 2009, 109,
817–3858.
4.7
3
(
6) It should be noted that low detection limits for most metal by-
products also affords quantitative confirmation of contaminant levels,
which can be advantageous.
0
5
10 15 20 25 30 35 40 45 50 55 60
Time (min)
(
7) Miura, T.; Kim, S.; Kitano, Y.; Tada, M.; Chiba, K. Angew.
Chem. Int. Ed. 2006, 45, 1461–1463.
8) Chiba, K.; Miura, T.; Kim, S.; Kitano, Y.; Tada, M. J. Am.
Chem. Soc. 2001, 123, 11314–11315.
9) (a) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239716. (b)
(
Figure 4. Plot of % conversion of monomer vs time, solid lines
indicate periods of exposure to blue LED light. Dotted lines indi-
(
cate periods in the dark, data point labels indicate M
Initial conditions: 1:2a = 100:1, [1] = 2.3 M.
n
values (kDa).
Nicewicz, D. A.; Nguyen, T. M. ACS Catalysis 2014, 4, 355–360. (c)
Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344,
392–396. (d) Riener, M.; Nicewicz, D. A. Chem. Sci. 2013, 4, 2625–
2629. (e) Lu, Z.; Yoon, T. P. Angew. Chem. Int. Ed. 2012, 51, 10329–
10332.
(10) (a) Xu, J.; Jung, K.; Atme, A.; Shanmugan, S.; Boyer, C. J. Am.
Chem. Soc. 2014, 136, 5508–5519. (b) Xu, J.; Jung, K.; Corrigan, N. A.;
Boyer, C. Chem. Sci. 2014, 5, 3568–3575. (c) Xu, J.; Jung, K.; Boyer, C.
Macromolecules 2014, 47, 4217–4229. (d) Shanmugam, S.; Xu, J.; Boyer,
C. Macromolecules 2014, 47, 4930–4942. (e) Poelma, J. E.; Fors, B. P.;
Meyers, G. F.; Kramer, J. W.; Hawker, C. J. Angew. Chem. Int. Ed. 2013,
0
In summary, we have developed the first protocol for achiev-
ing metal-free ROMP. The approach utilizes one-electron oxida-
tion of electron-rich vinyl ethers to initiate the process, which
can be achieved either electrochemically or via photoredox pro-
cesses. A photoredox approach enabled high yields of polymeri-
zation in short reaction times under mild conditions. This
demonstration may lead to a complementary approach to syn-
thesizing ROMP polymers via a metal-free protocol, with poten-
tial to offer unique synthetic control over end group functional-
ity. The success of the photoredox mediation may also provide
new opportunities for spatiotemporal control over production
of ROMP-based polymers and materials.
5
2
2, 6844–6848. (f) Fors, B. P.; Hawker, C. J. Angew. Chem. Int. Ed.
012, 51, 8850–8853.
(
11) Martiny, M.; Steckhan, E.; Esch, T. Chem. Ber. 1993, 126,
1671–1682.
(12) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N.
V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600–1601.
ASSOCIATED CONTENT
(
13) Choi, T.-L.; Grubbs, R. H. Angew. Chem. Int. Ed. 2003, 42,
Detailed experimental procedures, representative cyclic voltammo-
grams and current-time plots, and characterization of all new com-
1743-1746.
ACS Paragon Plus Environment