ChemComm
Communication
Table 1 Self-association constants between the individual donor and
acceptor molecular and the association constants between the donor
and acceptor pairsa
working close to the detection limits of the instrument the
errors associated with these values are large (Table 1 and ESI†).
There are about two orders of magnitude difference between
all Ka determined in water vs. heptane for the 1 : 1 NDI : DN
mixtures (by 1H NMR: 8.3 MÀ1 in heptane; 2000 MÀ1 in
water20). This strengthens the argument (vide supra) that the
solvophobic effects have a lower contribution in heptane when
compared to water.32 It is however noteworthy that the molecules
show no association in chloroform regardless of the presence or
absence of a complementary D–A partner.
We have shown that not only aromatic donor–acceptor
interactions are possible in aliphatic solvents, but also that
they lead to significant association between complementary
aromatic cores. There is little or no geometrical preference for
the interaction between NDI and 1,5- or 2,6-DN isomers, or side
chain dependence. We believe that this works demonstrates that
supramolecular architectures, similar to the numerous examples in
aqueous media, could be constructed in non-polar aliphatic media.
We thank the EPSRC, BP, the EPSRC NMSF, the BMSS and
the University of Bath for Financial Support. SIP thanks the
Royal Society for a University Research Fellowship. We also
thank Dr Nick Buurma for helpful discussions regarding the
ITC experiments and IC2ITC software, and Mr Liam Emmett for
helpful discussions regarding theoretical and experimental
aspects of the project.
Compound
Ka NMRb (MÀ1
)
Ka UVc (MÀ1
)
Ka ITCc (MÀ1
)
1
2
3
3.4 Æ 1
o1
n/a
n/a
n/a
4.2 Æ 0.3
4.9 Æ 0.3
2.4 Æ 0.3
1.7
o1
o1
o1
1 + 2
1 + 3
1 + 4
8.3 Æ 0.2
6.0 Æ 0.3
6.9 Æ 0.9
11.5
11.3
6.1
a
b
Single compound dilutions carried out at 25 1C. The most downfield
peak was monitored over a 25–3.6 mM conc. All the titrations used
heptane : octane-d18 : 1,1,2,2-tetrachloroethane 95.2 : 4.8 : 0.1 as solvent.
c
Minimum value calculated by IC2ITC used see ESI.31
3.4 Æ 1 MÀ1 was determined. These results were confirmed by
ITC experiments (Table 1). The very weak dimerisation con-
stants, which are two orders of magnitude lower than in water,
indicate that the contribution of the solvophobic effect in
heptane is very small when compared to water. (NDI–NDI
dimerisation in water 200 MÀ1 vs. 3.4 MÀ1 in heptane; the
dimerization constant in heptane is similar to those reported in
CH3CN or acetone).20 Titration experiments were carried out via
1H-NMR, ITC and UV-vis in order to determine the association
1
constants between the NDI and DN. The H-NMR experiments
(25 mM initial NDI concentration) indicated the presence of a
significant interaction between the donor (DN) and the acceptor
(NDI) cores with association constants determined for 1 with 2, 1
Notes and references
with 3 and 1 with 4 of 8.3 Æ 0.2, 6.0 Æ 0.3 MÀ1 and 6.9 Æ 0.9 MÀ1
,
1 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525.
2 C. R. Martinez and B. L. Iverson, Chem. Sci., 2012, 3, 2191.
3 C. A. Hunter, Angew. Chem., Int. Ed. Engl., 1993, 32, 1584.
4 S. L. Cockroft, C. A. Hunter, K. R. Lawson, J. Perkins and C. J. Urch,
J. Am. Chem. Soc., 2005, 127, 8594.
5 S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann,
B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay and
S. J. Rowan, Chem. Commun., 2009, 6717.
respectively. The change in chemical shift on the NDI and DN
aromatic protons is consistent with a face-centred stacking
interaction (Fig. 4). These results also show that there is little
or no geometrical preference or side chain influence for associa-
tion as all DNs show similar Ka in their interaction with NDI 1.
This was further confirmed by UV-vis spectroscopy, since the
charge transfer band formed at 510 nm can be monitored at
high concentrations (r55.5 mM) allowing the determination of
Ka of 4.2 Æ 0.3 MÀ1, 4.9 Æ 0.3 MÀ1 and 2.4 Æ 0.3 MÀ1 for 1Á2, 1Á3
and 1Á4 respectively (Fig. 3). A similar trend was observed by
ITC, where association constants of 11.5, 11.3 and 6.1 MÀ1 were
determined for 1Á2, 1Á3 and 1Á4 respectively. The reported values
are the fit minimum value calculated by ICITC2 and due to
6 S. Burattini, B. W. Greenland, D. H. Merino, W. G. Weng, J. Seppala,
H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley and
S. J. Rowan, J. Am. Chem. Soc., 2010, 132, 12051.
7 (a) H. Y. Au-Yeung, F. B. L. Cougnon, S. Otto, G. D. Pantos and
J. K. M. Sanders, Chem. Sci., 2010, 1, 567; (b) F. B. L. Cougnon,
H. Y. Au-Yeung, G. D. Pantos- and J. K. M. Sanders, J. Am. Chem. Soc.,
2011, 133, 3198; (c) G. Kaiser, T. Jarrosson, S. Otto, Y.-F. Ng,
A. D. Bond and J. K. M. Sanders, Angew. Chem., Int. Ed., 2004,
ˇ
´
43, 1959; (d) O. S. Miljanic, W. R. Dichtel, S. I. Khan, S. Mortezaei,
J. R. Heath and J. F. Stoddart, J. Am. Chem. Soc., 2007, 129, 8236;
(e) L. Fang, S. Basu, C.-H. Sue, A. C. Fahrenbach and J. F. Stoddart,
J. Am. Chem. Soc., 2011, 133, 396.
8 C. J. Bruns, J. Li, M. Frasconi, S. T. Schneebeli, J. Iehl, H.-P. Jacquot
de Rouville, S. I. Stupp, G. A. Voth and J. F. Stoddart, Angew. Chem.,
Int. Ed., 2014, 53, 1953.
9 S. K. Dey, A. Coskun, A. C. Fahrenbach, G. Barin, A. N. Basuray,
A. Trabolsi, Y. Y. Botros and J. F. Stoddart, Chem. Sci., 2011, 2, 1046.
10 T. Iijima, S. A. Vignon, H.-R. Tseng, T. Jarrosson, J. K. M. Sanders,
F. Marchioni, M. Venturi, E. Apostoli, V. Balzani and J. F. Stoddart,
Chem. – Eur. J., 2004, 10, 6375.
11 (a) H. M. Colquhoun, D. J. Williams and Z. Zhu, J. Am. Chem. Soc.,
2002, 124, 13346; (b) H. M. Colquhoun, Z. Zhu and D. J. Williams,
Org. Lett., 2003, 5, 4353; (c) H. M. Colquhoun, Z. Zhu, D. J. Williams,
M. G. B. Drew, C. J. Cardin, Y. Gan, A. G. Crawford and T. B. Marder,
Chem. – Eur. J., 2010, 16, 907; (d) L. Chen, Y.-M. Zhang, L.-H. Wang
and Y. Liu, J. Org. Chem., 2013, 78, 5357; (e) M. R. Molla, A. Das and
S. Ghosh, Chem. – Eur. J., 2010, 16, 10084; ( f ) A. Das, M. R. Molla,
A. Banerjee, A. Paul and S. Ghosh, Chem. – Eur. J., 2011, 17, 6061.
12 A. M. Ramos, S. C. J. Meskers, E. H. A. Beckers, R. B. Prince,
L. Brunsveld and R. A. J. Janssen, J. Am. Chem. Soc., 2004, 126, 9630.
Fig. 4 1H NMR titration of 1 and 2 spectra at 0, 0.5, 1, 2, 3 equiv. of 3. With
increasing ratio of 3, the aromatic proton signal of 1 moves upfield while
the signal corresponding to Hb and to a lesser extent of Ha of 3 shifts
downfield.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun.