638 J. Phys. Chem. B, Vol. 101, No. 4, 1997
Xiao et al.
work was initially supported by the University of Minnesota in
the form of start-up funds. We thank Professor Timothy Lodge
for loaning us a high precision translational stage and Mr.
Mengcheng Chen for assistance in SFM imaging.
(37) Sonnenfeld, R.; Schneir, J.; Hansma, P. K. In Modern Aspects of
Electrochemistry; R. E. White, J. O’M. Bockris, B. E. Conway, Eds.;
Plenum: New York, 1990.
(
38) Ross, C. B.; Sun, L.; Crooks, R. M. Langmuir 1993, 9, 632-636.
(39) Schoer, J. K.; Ross, C. B.; Crooks, R. M.; Corbitt, T. S.; Hampden-
Smith, M. J. Langmuir 1994, 10, 615-618.
(
40) Schoer, J. K.; Zamborini, F. P.; Crooks, R. M. J. Phys. Chem. 1996,
References and Notes
1
00, 11086-11091.
(
(
(
41) Hsu, T. Ultramicroscopy 1983, 11, 167.
42) Schott, J. H.; White, H. S. Langmuir 1992, 8, 1955-1960.
43) Johnson, D. C.; LaCourse, W. R. Anal. Chem. 1990, 62, 589A-
(
1) Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977,
8
4, 1-20.
(2) Albrecht, M. G.; Creighton, J. A. J. Am. Chem. Soc. 1977, 99,
5
96A.
5
215-5217.
(44) The Ag particles shown in Figures 4 and 5 were deposited at 500
(
3) Van Duyne, R. P. In Chemical and Biochemical Applications of
and 470 mV, respectively. These values are higher than the theoretical
threshold of 425 mV. We think that the difference is caused by liquid
junction potential and other factors associated with a non-ideal reference
electrode.
Lasers; C. B. Moore, Ed.; Academic Press: New York, 1979; p 101
4) Surface Enhanced Raman Scattering; R. K. Chang, T. E. Furtak,
Eds.; Plenum Press: New York, 1982.
5) Otto, A. In Light Scattering in Solids; M. Cardona, G. Guntherodt,
Eds.; Springer-Verlag: Heidelberg, 1984; p 289.
(
(
(
(
(
45) Butt, H.-J.; Berharz, B. Langmuir 1995, 11, 4735-4741.
46) Keller, D. Surf. Sci. 1991, 253, 353.
(
(
(
(
6) Moskovits, M. ReV. Mod. Phys. 1985, 57, 783.
7) Schatz, G. C. Acc. Chem. Res. 1984, 17, 370-376.
8) Kerker, M. Acc. Chem. Res. 1984, 17, 271-277.
9) Ueba, H. Surf. Sci. 1983, 131, 347-366.
47) Albrecht, T. R.; Akamine, S.; Carver, T. E.; Quate, C. F. J. Vac.
Sci. Technol. A 1990, 8, 3386-3396.
48) Sondag-Huethorst, J. A. M.; Fokkink, L. G. J. Langmuir 1995, 11,
823-4831.
49) Sun, L.; Crooks, R. M. Langmuir 1993, 9, 1951-1954.
(50) Li, W.; Virtanen, J. A.; Penner, R. M. Langmuir 1995, 11, 4361-
4365.
(51) Li, W.; Virtanen, J. A.; Penner, R. M. J. Phys. Chem. 1994, 98,
11751.
(52) Chan, K. C.; Kim, T.; Schoer, J. K.; Crooks, R. M. J. Am. Chem.
(
4
(
(
10) Otto, A. J. Raman Spectrosc. 1991, 22, 743-752.
11) Campion, A.; Ivanecky, J. E., III; Child, C. M.; Foster, M. J. Am.
(
Chem. Soc. 1995, 117, 11807-11808.
12) Campion, A. J. Electron Spectrosc. Relat. Phenom. 1983, 29, 397-
00.
13) Here, the surface morphology refers to the size, shape, and spatial
(
4
(
distribution of metal particles that are either supported on a substrate, such
as Ag islands on a glass slide, or merged with a substrate, such as protrusions
on an electrochemically roughened electrode surface. A related term, namely,
Soc. 1995, 117, 5875-5876.
(53) Berggren, K. K.; Bard, A.; Wilbur, J. L.; Gillaspy, J. D.; Helg, A.
G.; McClelland, J. J.; Rolston, S. L.; Phillips, W. D.; Prentiss, M.;
Whitesides, G. M. Science 1995, 269, 1255-1257.
“
surface roughness”, has a more narrow meaning: it only defines an average
particle size and does not necessarily include a connotation of spatial
distribution.
(54) Jackman, R. J.; Wilbur, J. L.; Whitesides, G. M. Science 1995,
269, 664-666.
(
14) Van Duyne, R. P.; Hulteen, J. C.; Treichel, D. A. J. Chem. Phys.
993, 99, 2101-2115.
15) Schueler, P. A.; Ives, J. T.; DeLaCroix, F.; Lacy, W. B.; Becker,
P. A.; Li, J.; Caldwell, K. D.; Drake, B.; Harris, J. M. Anal. Chem. 1993,
1
(55) Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Science 1996, 272,
85-87.
(
(56) Masuda, H.; Fukuda, K. Science 1995, 268, 1466-1468.
(57) Note that the surface coverage nS refers to the number of molecules
per geometric surface area since the area term originates from the cross
sectional area of the laser beam. In addition, if the sample surface is
homogeneous over a scale of beam size, then IR depends only on the laser
power PL, but not on the area of illumination.
6
5, 3177-3186.
(
(
(
16) Roark, S. E.; Rowlen, K. L. Anal. Chem. 1994, 66, 261-270.
17) Otsuka, I.; Iwasaki, T. J. Vac. Sci. Technol. A 1990, 8, 530-533.
18) Sun, L. Ph.D. Thesis, Northwestern University, Evanston, IL,
1
990.
(
(
(
19) Furtak, T. E. J. Electroanal. Chem. 1983, 150, 375-388.
(58) In eq 3, INR was measured as the integrated intensity of the 992
-
1
-30
2
20) Pockrand, I.; Otto, A. Solid State Commun. 1981, 38, 1159-1163.
cm band from a 1-mm thick benzene film, and σ′NR ) 7.1 × 10
cm
-
1
21) Buncick, M. C.; Warmack, R. J.; Ferrell, T. L. J. Opt. Soc. Am. B
sr as reported in Trulson, M. O.; Mathies, R. A. J. Chem. Phys. 1986,
84, 2068-2074.
1
987, 4, 927-933.
22) Moody, R. L.; Vo-Dinh, T.; Fletcher, W. H. Appl. Spectrosc. 1987,
1, 966-970.
23) Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal.
Chem. 1995, 67, 735-743.
24) Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis,
(
(59) NA, the numerical aperture, is sin θmax in air, where θmax is the
angle between the optical axis and the marginal ray entering the objective.
4
2
(
In comparison, Ω ) π(tan θmax) .
(60) The integrated intensity of the CdC stretching bands from 1-mm
thick 0.14 M t-4MMS solution was compared with the intensity of the 992
(
-
1
20
J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter,
cm band from 1-mm thick neat benzene. Thus, nF ) 6.74 × 10
2
1
8
2
D. G.; Natan, M. J. Science 1995, 267, 1629-1632.
molecules/cm for benzene, and nF ) 8.32 × 10 molecules/cm for
(25) Grabar, K. C.; Smith, P. C.; Musick, M. D.; Davis, J. A.; Walter,
t-4MMS.
D. G.; Jackson, M. A.; Guthrie, A. P.; Natan, M. J. J. Am. Chem. Soc.
(61) We obtained this value by ignoring the local surface roughness
and assuming a closely-packed SAM of (x3 × x3)R30 lattice on an
Ag(111) surface. The (x3 × x3)R30 lattice distance can be calculated
from the nearest neighbor distance of an Ag fcc crystal (2.89 Å).
(62) The laser spot size was measured following the method in ref 32.
The measurement uncertainty is primarily determined by the resolution of
the one-dimensional micrometer (0.1 µm) used in the measuring apparatus.
(63) We may define the upper limit as the enhancement factor in eq 4
when the noise is comparable to the signal, i.e., ISR ) INOISE. The measured
spectrum baseline noise is about 1 count per second per mW of incident
power.
1
996, 118, 1148-1153.
26) Chumanov, G.; Sokolov, K.; Cotton, T. M. J. Phys. Chem. 1996,
00, 5166-5188.
27) Liao, P. F.; Bergman, J. G.; Chemla, D. S.; Wokaun, A.; Melngailis,
J.; Hawryluk, A. M.; Economou, N. P. Chem. Phys. Lett. 1981, 82, 355.
28) Bergman, J. G.; Chemla, D. S.; Liao, P. F.; Glass, A. M.; Pinczuk,
(
1
(
(
A.; Hart, R. M.; Olson, D. H. Opt. Lett. 1981, 6, 33-35.
(
(
29) Martin, C. R. Science 1994, 266, 1961-1965.
30) Treichel, D. A. Ph.D. Thesis, Northwestern University, Evanston,
IL, 1991.
(
31) Van Duyne, R. P.; Haller, K. L.; Altkorn, R. I. Chem. Phys. Lett.
(64) Baranovic, G.; Meic, Z.; Gusten, H.; Mink, J.; Keresztury, G. J.
Phys. Chem. 1990, 94, 2833-2843.
1
986, 126, 190.
(
32) Haller, K. L. Ph.D. Thesis, Northwestern University, Evanston, IL,
988.
33) SERS from colloidal Ag particles has been observed under a
(65) Since nS refers to the surface coverage per geometric area, it should
be equal to the monolayer coverage multiplied by a geometric factor. The
factor is simply equal to the ratio of the particle’s surface area to its projected
1
(
2
2
spectroscopic microscope. However, the detected signal might result from
a cluster of particles since higher resolution images of the observed spots
were not reported. See, for example, (a) Emory, S. R.; Nie, S., Pittsburgh
Conference, 1996 Meeting Abstract, and (b) Vlckova, B.; Gu, X. J.; Tsai,
D. P.; Moskovits, M. J. Phys. Chem. 1996, 100, 3169-3174.
geometric area, i.e., 4πr /πr ) 4 for spherical particles.
(66) Zeman, E. J.; Schatz, G. C. J. Phys. Chem. 1987, 91, 634-643.
(67) Blatchford, C. G.; Campbell, J. R.; Creighton, J. A. Surf. Sci. 1982,
120, 435-455.
(68) Freeman, R. G.; Hommer, M. B.; Grabar, K. C.; Jackson, M. A.;
Natan, M. J. J. Phys. Chem. 1996, 100, 718-724.
(69) Gersten, J. I.; Nitzan, A. Surf. Sci. 1985, 158, 165-189.
(70) Laor, U.; Schatz, G. C. Chem. Phys. Lett. 1981, 82, 566-570.
(71) Wokaun, A.; Gordon, J. P.; Liao, P. F. Phys. ReV. Lett. 1982, 48,
957-960.
(
34) Wardell, J. L. In The Chemistry of the Thiol Group; S. Patai, Ed.;
Wiley: New York, 1974; p 186.
35) Bain, C. D.; Troughton, E. B.; Tao, Y.-T.; Evall, J.; Whitesides,
G. M.; Nuzzo, R. G. J. Am. Chem. Soc. 1989, 111, 321-335.
36) Tsen, M.; Sun, L. Anal. Chim. Acta 1995, 307, 333-340.
(
(