Angewandte
Chemie
Chem. Soc. 2003, 125, 14133 – 14139; e) D. Ferraris, T. Dudding,
very poor diastereoselectivities. It is likely that the allylin-
dium reagent is not geometrically stable,[12] as the reactions of
both (Z)- and (E)-crotyl bromide afforded similar product
mixtures.
B. Young, W. J. Drury, T. Lectka, J. Org. Chem. 1999, 64, 2168 –
2169; f) A. E. Taggi, A. M. Hafez, T. Lectka, Acc. Chem. Res.
2003, 36, 10 – 19; g) D. Ferraris, B. Young, C. Cox, T. Dudding,
W. J. Drury, L. Ryzhkov, A. E. Taggi, T. Lectka, J. Am. Chem.
Soc. 2002, 124, 67 – 77; h) X. M. Fang, M. Johannsen, S. L. Yao,
N. Gathergood, R. G. Hazell, K. A. Jørgensen, J. Org. Chem.
1999, 64, 4844 – 4849; i) T. Hamada, K. Manabe, S. Kobayashi,
Angew. Chem. 2003, 115, 4057 – 4060; Angew. Chem. Int. Ed.
2003, 42, 3927 – 3930; j) T. Gastner, H. Ishitani, R. Akiyama, S.
Kobayashi, Angew. Chem. 2001, 113, 1949 – 1951; Angew. Chem.
Int. Ed. 2001, 40, 1896 – 1898; k) R. Wada, T. Shibuguchi, S.
Makino, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc.
2006, 128, 7687 – 7691.
The discovery of catalyst 8b, which bears both a urea and
sulfinamide functionality, has led to the first application of
urea catalysis for highly enantioselective additions of organ-
ometallic reagents. The bifunctional nature of the catalyst, in
which a hydrogen-bond donor and a Lewis base are posi-
tioned properly and in close proximity, was found to be crucial
for the attainment of high ee values. The utility of 8b and
related urea derivatives in other synthetically interesting
nucleophile–electrophile reactions is under current investi-
gation.
[2] For examples of hydrazone allylation with chiral reagents, see:
a) C. Ogawa, M. Sugiura, S. Kobayashi, Angew. Chem. 2004, 116,
6653 – 6655; Angew. Chem. Int. Ed. 2004, 43, 6491 – 6493; b) S.
Kobayashi, C. Ogawa, H. Konishi, M. Sugiura, J. Am. Chem. Soc.
2003, 125, 6610 – 6611; c) R. Berger, P. M. A. Rabbat, J. L.
Leighton, J. Am. Chem. Soc. 2003, 125, 9596 – 9597; d) R.
Berger, K. Duff, J. L. Leighton, J. Am. Chem. Soc. 2004, 126,
5686 – 5687.
[3] For reviews on asymmetric imine allylation using chiral auxil-
iaries, see: a) G. Alvaro, D. Savoia, Synlett 2002, 651; b) H. Ding,
G. K. Friestad, Synthesis 2005, 2815 – 2829.
[4] For reviews on indium-mediated reactions, see: a) T.-P. Loh, G.-
L. Chua, Chem. Commun. 2006, 2739 – 2749; b) V. Nair, S. Ros,
C. N. Jayan, B. S. Pillai, Tetrahedron 2004, 60, 1959 – 1982;
c) B. C. Ranu, Eur. J. Org. Chem. 2000, 2347 – 2356.
[5] a) T. Vilaivan, C. Winotapan, V. Banphavichit, T. Shinada, Y.
Ohfune, J. Org. Chem. 2005, 70, 3464 – 3471; b) F. Foubelo, M.
Yus, Tetrahedron: Asymmetry 2004, 15, 3823 – 3825; c) I. R.
Cooper, R. Grigg, W. S. MacLachlan, V. Sridharan, M. Thorn-
ton-Pett, Tetrahedron Lett. 2003, 44, 403 – 405; d) I. R. Cooper,
R. Grigg, W. S. MacLachlan, M. Thornton-Pett, V. Sridharan,
Chem. Commun. 2002, 1372 – 1373; e) T. P. Loh, D. S. C. Ho,
K. C. Xu, K. Y. Sim, Tetrahedron Lett. 1997, 38, 865 – 868;
f) G. R. Cook, B. C. Maity, R. Kargbo, Org. Lett. 2004, 6, 1741 –
1743.
[6] G. R. Cook, R. Kargbo, B. Maity, Org. Lett. 2005, 7, 2767 – 2770.
[7] For reviews, see: a) S. J. Connon, Chem. Eur. J. 2006, 12, 5418 –
5427; b) M. S. Taylor, E. N. Jacobsen, Angew. Chem. 2006, 118,
1550 – 1573; Angew. Chem. Int. Ed. 2006, 45, 1520 – 1543; c) P. R.
Schreiner, Chem. Soc. Rev. 2003, 32, 289 – 296; d) Y. Takemoto,
Org. Biomol. Chem. 2005, 3, 4299 – 4306.
[8] For reviews on multifunctional catalysis, see: a) H. Groger,
Chem. Eur. J. 2001, 7, 5246 – 5251; b) M. Shibasaki, M. Kanai, K.
Funabashi, Chem. Commun. 2002, 1989 – 2183.
[9] For reports of bifunctional thiourea catalysts that promote
enantioselective reactions through dual activation, see ref. [7b]
and: a) S. B. Tsogoeva, S. Wei, Chem. Commun. 2006, 1451 –
1453; b) H. Huang, E. N. Jacobsen, J. Am. Chem. Soc. 2006, 128,
7170 – 7171; c) T. Inokuma, Y. Hoashi, Y. Takemoto, J. Am.
Chem. Soc. 2006, 128, 9413 – 9419; d) J. Song, Y. Wang, L. Deng,
J. Am. Chem. Soc. 2006, 128, 6048 – 6049.
Experimental Section
General procedure for the allylation of acylhydrazones catalyzed by
8b: Benzoic acid N’-[1-(2-bromo-phenyl)-but-3-enyl]-hydrazide
(Table 2, entry 6). 2-bromobenzoic acid benzylidene hydrazide
(303 mg, 1.00 mmol), indium powder (200 mg, 1.74 mmol), and 8b
(47 mg, 0.10 mmol) were added to a 20-mL scintillation vial. The vial
was purged with N2 for approximately 20 min, and then toluene
(10 mL) was added. The reaction mixture was cooled to À788C, and
then allyl bromide was added (228 mL, 2.63 mmol; purified through
an alumina plug immediately prior to use). The reaction mixture was
stirred vigorously at À208C for 19 h, then removed from the cold
bath, and immediately quenched with 1n HCl (4 mL) at room
temperature. The reaction mixture was diluted with ethyl acetate
(25 mL) and 0.67n NaOH (60 mL). The aqueous layer was extracted
with ethyl acetate (2 25 mL), and the organic layer was dried with
Na2SO4, filtered, and concentrated. The resulting residue was purified
by chromatography on silica gel (20% ethyl acetate/hexanes) to
afford a white solid (270 mg, 0.78 mmol, 78% yield). The enantio-
meric excess was determined to be 93% by SFC using a commercial
chiral stationary phase (Chiralpak OD-H, 15% methanol/CO2,
4 mLminÀ1À1, 308C, 254 nm; tr(minor): 2.42 min, tr(major): 2.77 min;
[a] = À78 degcm3 gÀ1 dmÀ1 (c = 0.730 gcmÀ3
,
CHCl3); 1H N MR
(400 MHz, CDCl3): d = 7.67 (dd, J = 1.8, 7.7, 1H), 7.62–7.58 (m,
2H), 7.54 (dd, J = 1.1, 7.7, 1H), 7.50–7.40 (m, 2H), 7.39–7.31 (m, 3H),
7.13 (dt, 1H, J = 1.8, 8.1), 5.97–5.88 (m, 1H), 5.31 (dd, J = 2.6, 7.0,
1H), 5.21 (dd, J = 2.1, 17.2, 1H), 5.17 (d, J = 10.6, 1H), 5.8–5.6 (m,
1H), 2.6–2.5 (m, 1H), 2.40 ppm (app dt, J = 8.4, 14.3, 1H); 13C N MR
(100 MHz, CDCl3): d = 167.2, 140.7, 134.0, 133.0, 132.8, 131.8, 128.8,
128.6, 128.3, 127.7, 126.8, 124.5, 118.4, 62.1, 39.3 ppm. IR (NaCl): n˜ =
3282.7 (br), 3064.7, 1638.4 9 (s), 1467.7 cmÀ1. ESI m/z [M+1]: 345.1
and 347.1.
Received: August 17, 2006
Published online: January 9, 2007
Keywords: allylation · asymmetric catalysis · indium ·
.
[10] Catalyst 8b was synthesized using commercially available
racemic tert-butyl sulfinyl chloride (Aldrich). The thiourea
variant of 8b promoted the model reaction with decreased
enantioselectivity, presumably owing to competitive coordina-
tion of the thiourea functionality to the allylindium species.
[11] The absolute configuration was determined for entries 2 and 7
(Table 2) to be S by comparison to optical rotations reported in
the literature. See ref. [2b].
synthetic methods
[1] For examples of enantioselective metal-catalyzed allylations of
imines, see: a) K. Nakamura, H. Nakamura, Y. Yamamoto, J.
Org. Chem. 1999, 64, 2614 – 2615; b) R. A. Fernandes, Y.
Yamamoto, J. Org. Chem. 2004, 69, 735 – 738; c) H. Nakamura,
K. Nakamura, Y. Yamamoto, J. Am. Chem. Soc. 1998, 120, 4242 –
4243; d) R. A. Fernandes, A. Stimac, Y. Yamamoto, J. Am.
[12] M. B. Isaac, T. H. Chan, Tetrahedron Lett. 1995, 36, 8957 – 8960.
Angew. Chem. Int. Ed. 2007, 46, 1315 –1317
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1317