Cµtia Ornelas et al.
FULL PAPERS
1
4
22.1 (CH of triazole), 60.3 (SiCH O), 50.5 (CH SO Na), Acknowledgements
2
2
3
3.9 (SiCH CH CH ), 41.9 (benzylic Cq), 34.2 (SiCH -tria-
2
2
2
2
zole), 21.1 (SiCH CH CH ), 17.3 (SiCH CH CH ), À4.0 [Si-
We are grateful to Fundażo para a CiÞncia e a Tecnologia
(FCT), Portugal (Ph.D. grant to CO), the Institut Universi-
taire de France (IUF, DA), the CNRS and the UniversitØ Bor-
deaux I for financial support.
2
2
2
2
2
2
A
C
H
T
R
E
U
N
G
(CH ) ]. Polydispersity index obtained by SEC: 1.01.
3 2
Synthesis of 6
The 81-SO Na-dendrimer 6 was synthesized from the 81-
3
azido-dendrimer 3 (0.050 g, 0.0024 mmol) and sodium prop-
argyl sulphonate (0.042 g, 0.29 mmol) using the general pro-
cedure for “click” reactions. The product was obtained as a
References
[
1] Aqueous-Phase Organometallic Catalysis. Concepts and
Applications, 2nd edn., (Eds.: B. C. Cornils, W. A. Herr-
mann), Wiley-VCH, Weinheim, 2004; F. Joo, Acc.
Chem. Res. 2002, 35, 738.
1
colorless waxy product; yield: 0.041 g (53%). H NMR
(
D O/MeOD, 300 MHz): d=7.89 (s, CH of triazole), 7.09
2
and 6.83 (s, arom. CH of dendron), 4.10 (s, CH SO Na), 3.94
2
3
(
s, SiCH -triazole), 3.58 (s, SiCH O), 1.51 (s, CH CH CH Si),
A
C
H
T
R
E
U
N
G
2
2 2 2 2
[
2] For aqueous-biphasically catalyzed Suzuki reactions
using organometallic catalysts, see: M. Beller, J. G. E.
Krauter, A. Zapf, Angew. Chem. Int. Ed. Engl. 1997,
1
Si
.01 (s, CH CH CH Si), 0.52 (s, CH CH CH Si), À0.068 [s,
2
3
2
2
2
2
2
1
A
C
H
T
R
E
U
N
G
(CH ) ]; C NMR (D O/MeOD, 75.0 MHz): d=145.8 (C
3
2
2
q
of triazole), 127.9 and 114.8 (arom. CH of the dendron),
3
1
6, 772; E. Paetzold, G. Oehme, J. Mol. Cat. A 2000,
52, 69; C. Dupuy, K. Adiey, L. Charruault, V. Michel-
1
22.5( CH of triazole), 60.3 (SiCH O), 50.8 (CH SO Na),
2 2 3
4
3.9 (SiCH CH CH ), 41.9 (benzylic Cq), 34.8 (SiCH -tria-
2
2
2
2
et, M. Savignac, J.-P. GenÞt, Tetrahedron Lett. 2001, 42,
523.
zole), 21.8 (SiCH CH CH ), 17.3 (SiCH CH CH ), À4.0 [Si-
2
2
2
2
2
2
6
A
C
H
T
R
E
U
N
G
(CH ) ]. Polydispersity index obtained by SEC: 1.01. Hydro-
3 2
[
3] P. T. Anastas, J. C. Warner, Green Chemistry: Theory
and Practice, Oxford University Press, New York, 1998.
4] H. Bçnnemann, W. Brijoux, in: Active Metals, (Ed.: A.
Fürstner), VCH, Weinheim, 1996, p 339; M. T. Reetz,
W. Helbig, S. A. Quaiser, in: Active Metals, (Ed.: A.
Fürstner), VCH, Weinheim, 1996, p 279; N. Toshima,
Y. Yonezawa, New J. Chem. 1998, 22, 1179; B. F. G.
Johnson, Coord. Chem. Rev. 1999, 190, 1269; A. Rou-
coux, J. Schulz, H. Patin, Chem. Rev. 2002, 102, 3757; S.
Mandal, P. R. Selvakannan, D. Roy, R. V. Chaudhari,
M. Sastry, Chem. Commun. 2002, 3002; J. Dupont, G. S.
Fonseca, A. P. Umpierre, P. F. P. Fichner, J. Am. Chem.
Soc. 2002, 124, 4228; H. Ohde, C. M. Wai, J. Kim, M.
Ohde, J. Am. Chem. Soc. 2002, 124, 4540; A. Roucoux,
J. Schulz, H. Patin, Adv. Syn. Catal. 2003, 345, 222; H.
Bçnnemann, K. S. Nagabushana, in: Encyclopedia of
Nanoscience and Nanotechnology, (Ed.: H. S. Nalwa),
ASP, Stevenson Ranch, 2004, Vol. 1, p 777; M. Bron-
stein, in: Encyclopedia of Nanoscience and Nanotech-
nology, Vol 7, (Ed.: H. S. Nalwa), ASP, Stevenson
Ranch, 2004, p 193; M. Bronstein, in: Dekker Encyclo-
pedia of Nanoscience and Nanotechnology, (Eds.: J. A.
Schwarz, C. I. Contescu, K. Putyera), Marcel Dekker,
New York, 2004, p 2903; F. Lu, J. R. Aranzaes, D.
Astruc, Angew. Chem. Int. Ed. 2005, 44, 7852; D.
Astruc, Inorg. Chem. 2007, 46, 1884; Nanoparticles and
Catalysis, (Ed.: D. Astruc), Wiley-VCH, Weinheim,
dynamic diameter obtained by dynamic light scattering in
water: 25.8Æ0.7 nm.
[
General Procedure for the Preparation of the PdNPꢀs
The procedure is described using the preparation of DSN-
À4
G as an example: 1 mL of a 3.610 M water solution of
0
À4
dendrimer 4-G (1.0 mg, 3.610 mmol) was introduced in
0
À3
a Schlenk flask. 1.1 mL of a 2.910 M water solution of
À3
K PdCl (1.1 mg, 3.210 mmol, 1 equiv per triazole) was
added. Water was added, providing a 8.8210 M (in Pd)
2
4
À4
solution that was stirred for 5min, then NaBH (1 mg, 3.2
4
À2
10
mmol, 10 equiv. per Pd) was added, and the light yellow
solution turned to black indicating the nanoparticle forma-
tion.
Hydrogenation Reactions
The nanoparticles were freshly prepared in a Schlenk flask
À4
in an aqueous solution (8.8210
M
in Pd), and
10,000 equiv. of the substrate was added. The Schlenk flask
was filled with H (1 atm), and the solution was allowed to
2
stir at 258C. For re-use of the catalyst, the substrate was
added to the reaction solution until the catalyst was no
longer active. Calculation of the turnover frequency (TOF)
was carried out using several samples of the solution that
were extracted at different reaction times and analyzed. Cal-
culation of the turnover number (TON) was carried out
using the sum of substrate that reacted in all the catalytic
cycles, after analyzing the final reaction solution.
2
007.
[
5] For metallodendrimer catalysis, see: G. R. Newkome,
E. He, C. N. Moorefield, Chem. Rev. 1999, 99, 1689; D.
Astruc, F. Chardac, Chem. Rev. 2001, 101, 2991; G. E.
Oosterom, J. N. H. Reek, P. C. J. Kamer, P. W. N. M.
van Leeuwen, Angew. Chem. Int. Ed. 2001, 40, 1828; R.
Kreiter, A. W. Kleij, R. J. M. K. Gebbink, G. van
Koten, in: Dendrimers IV: Metal Coordination, Self As-
sembly, Catalysis, (Eds.: F. Vçgtle, C. A. Schalley), Top.
Curr. Chem. Springer Verlag, Berlin, 2001, Vol. 217,
p 163; R. van Heerbeeck, P. C. J. Kamer, P. W. N. M.
van Leeuwen, J. N. H. Reek, Chem. Rev. 2002, 102,
3717; D. Astruc, D. MØry, Coord. Chem. Rev. 2005, 250,
1965.
Suzuki Reactions with DSNs
In a Schlenk flask, the nanoparticles were freshly prepared
À4
in aqueous solution (8.8210 M in Pd), then ethanol was
added, providing a 1:1 water/ethanol solution. K PO , phe-
3
4
nylboronic acid and iodobenzene or bromobenzene were
successively added. The solution was allowed to stir under
N at 258C for iodobenzene and at 1008C for bromoben-
2
zene.
844
ꢀ 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2008, 350, 837 – 845