Table 2 (continued )
perform procedure is applicable with a series of structurally
diverse nitroarenes. Notably, the nitro group is chemoselectively
reduced in the presence of other sensitive groups such as CQC,
CRC, CRN, OH, ether, thioether and ester groups.
Yield Selectivity
(%) (%)
Entry Nitro compound
Aniline
47
48
a
92
90
93
98
Notes and references
1 (a) R. S. Downing, P. J. Kunkeler and H. van Bekkum,
Catal. Today, 1997, 37, 121–136; (b) N. Ono, The Nitro Group in
Organic Synthesis, Wiley-VCH, New York, 2001.
2 For reviews see: (a) H. U. Blaser, U. Siegrist, H. Steiner and M. Studer,
Fine Chemicals Through Heterogeneous Catalysis, Wiley-VCH,
Weinheim, 2001, pp. 389–406; (b) S. Nishimura, Handbook of Hetero-
geneous Hydrogenation of Organic Synthesis, Wiley, New York, 2001.
3 For recent examples see: (a) M. Takasaki, Y. Motoyama, K. Higashi,
S. H. Yoon, I. Mochida and H. Nagashima, Org. Lett., 2008, 10,
Reaction conditions: 0.5 mmol nitro compound, 2 mmol hydrazine hydrate,
Fe–phenanthroline/C (1 mol% Fe), 100 1C, 10 h. b Reaction conditions:
0.5 mmol nitro compound, 4 mmol hydrazine hydrate, Fe–phenanthroline/C
(1 mol% Fe), 100 1C. c Scaled up by factor 10 and isolated yields are given.
with this catalyst even after 24 h reaction time. To our delight,
pyrolysis of the in situ-generated Fe(OAc)2–phenanthroline
complex supported on carbon led to a highly active system.
Here, nitrobenzene is completely reduced to aniline in 99%
yield (Table 1, entry 7). Notably, the pyrolyzed catalyst system
is highly stable and can be re-used.
1601–1604; (b) F. Cardenas-Lizana, S. Gomez-Quero and
´ ´
M. A. Keane, Catal. Commun., 2008, 9, 475–481; (c) Y. Chen, J. Qiu,
X. Wang andJ. Xiu, J. Catal., 2006, 242, 227–230; (d)H. Wua, L. Zhuo,
Q. He, X. Liao and B. Shi, Appl. Catal., A, 2009, 366, 44–56;
(e) J. Wang, Z. Yuan, R. Nie, Z. Hou and X. Zheng, Ind. Eng. Chem.
Res., 2010, 49, 4664–4669; (f) A. Corma, P. Serna, P. Concepcion and
J. Calvino, J. Am. Chem. Soc., 2008, 130, 8748–8753.
4 J. W. Bae, Y. J. Cho, S. H. Lee, C. O. M. Yoon and C. M. Yoon,
Chem. Commun., 2000, 1857–1858.
5 R. J. Rahaim and R. E. Maleczka, Org. Lett., 2005, 7, 5087–5090.
6 C. T. Redemann and C. E. Redemann, Org. Synth., 1955, 3, 69.
7 (a) H. Imai, T. Nishiguchi and K. Fukuzumi, Chem. Lett., 1976,
As shown in Table 2, a variety of nitro compounds can be
highly selectively reduced under the optimized conditions in
the presence of Fe–phenanthroline/C. Except for the fluorine-
substituted substrate (90%), excellent yields (99%) of the corres-
ponding haloanilines are achieved (Table 2, entries 2–9). Obviously,
in none of these cases significant amounts of dehalogenations
occurred. The protocol also works well for the reduction of other
substituted nitroarenes (Table 2, entries 10–16). Even, sterically
hindered 2,6-dimethylnitrobenzene selectively gave 93% aniline
(Table 2, entry 14). The more active 4-nitrobenzotrifluoride
and 5-bromo-2-nitrobenzotrifluoride are also completely reduced
to the corresponding anilines in excellent yield (99%, Table 2,
entries 15 and 16). Notably, nitro anilines are selectively reduced
to dianilines in 493% yield (Table 2, entries 17–20). Reduction of
1,4-dinitrobenzene proceeded selectively, affording 90% 4-nitro-
aniline (Table 2, entry 21). In contrast, complete reduction of
both the nitro groups of dinitrobenzenes was achieved using 4
additional equivalents of hydrazine hydrate to produce diamino-
benzenes in 94–98% yield (Table 2, entries 22–24). This makes it
likely that the first step in the reduction of the nitro group is the
rate determining step in the overall reduction sequence.
655–656; (b) H. Berthold, T. Schotten and H. Honig, Synthesis,
2002, 1607–1610.
¨
8 Y. Watanabe, T. Ohta, Y. Tsuji, T. Hiyoshi and Y. Tsuji, Bull.
Chem. Soc. Jpn., 1984, 57, 2440–2444.
9 A. B. Taleb and G. Jenner, J. Mol. Catal., 1994, 91, 149–153.
10 (a) A. Corma and P. Serna, Science, 2006, 313, 332–334; (b) L. He,
L.-C. Wang, H. Sun, J. Ni, Y. Cao, H.-Y. He and K.-N. Fan,
Angew. Chem., Int. Ed., 2009, 48, 9538–9541.
11 U. Sharma, P. Kumar, N. Kumar, V. Kumar and B. Singh, Adv.
Synth. Catal., 2010, 352, 1834–1840.
12 J. E. Yanez, A. B. Rivas, J. Alvarez, M. C. Ortega, A. J. Pardey,
C. Longo and R. P. Feazell, J. Coord. Chem., 2006, 59, 1719–1728.
13 B. Plietker, Iron Catalysis in Organic Chemistry, Wiley-VCH,
Weinheim, 2008.
14 S. R. Boothroyd and M. A. Kerr, Tetrahedron Lett., 1995, 36,
2411–2414.
15 K. Junge, B. Wendt, N. Shaikh and M. Beller, Chem. Commun.,
2010, 46, 1769–1771.
16 L. Pehlivan, E. Metay, S. Laval, W. Dayoub, P. Demonchaux,
´
G. Mignani and M. Lemaire, Tetrahedron Lett., 2010, 51, 1939–1941.
17 M. Benz and R. Prins, Appl. Catal., A, 1999, 183, 325–333.
18 M. Lauwiner, P. Rys and J. Wissmann, Appl. Catal., A, 1998, 172,
141–148.
Next, we turned our interest towards the chemoselective reduc-
tion of nitroarenes in the presence of other reducible groups.
Notably, functional groups such as cyano, ether, thioether and
ester groups, and as well as more challenging C–C double and
triple bonds are not affected under these conditions (Table 2,
entries 28–40). In all these cases the nitro group was chemo-
selectively reduced to anilines in 93–99% yield. More specifically,
the reduction of cyano-substituted nitrobenzene, which is an
important transformation in organic chemistry, gave 99% of
4-cyanoaniline (Table 2, entry 35). Interestingly, the catalyst also
allows for the selective synthesis of amino heterocycles in 92–99%
yields from the corresponding heterocycles (Table 2, entries 41–48).
Finally, the recycling and reusability of catalyst was tested in
the reduction of the model system. Indeed, Fe–phenanthroline/C
is successfully recycled and reused 6 times without any signi-
ficant loss of catalytic activity (see the ESIw).
19 (a) H. U. Blaser, H. Steiner and M. Studer, ChemCatChem, 2009, 1,
210–221; (b) A. Saha and B. Ranu, J. Org. Chem., 2008, 73, 6867–6870.
20 (a) S. Enthaler, B. Hagemann, G. Erre, K. Junge and M. Beller,
Chem.–Asian J., 2006, 1, 598–604; (b) N. Shaikh, K. Junge,
S. Enthaler and M. Beller, Angew. Chem., Int. Ed., 2008, 47,
2497–2501; (c) S. L. Zhou, D. Addis, K. Junge, S. Das and
M. Beller, Chem. Commun., 2009, 4883–4885; (d) S. L. Zhou,
K. Junge, D. Addis, S. Das and M. Beller, Org. Lett., 2009, 11,
2461–2464; (e) S. Zhou, K. Junge, D. Addis, S. Das and M. Beller,
Angew. Chem., Int. Ed., 2009, 48, 9507–9510.
21 (a) M. Boran, S. Fiechter, M. Hilgendorff and P. Bogdanoff, J. Appl.
Electrochem., 2002, 32, 211–216; (b) A. L. Bouwkamp-Wijnoltz,
W. Visscher, J. A. R. van Veen, E. Boellaard, A. M. van der Kraan
and S. C. Tang, J. Phys. Chem. B, 2002, 106, 12993–13001.
22 For reviews on transfer hydrogenations see: (a) S. Gladiali and
E. Alberico, Chem. Soc. Rev., 2006, 35, 226–236; (b) J. S.
M. Samec, J.-E. Backvall, P. G. Andersson and P. Brandt, Chem.
¨
Soc. Rev., 2006, 35, 237–248.
23 (a) C. Smit, M. W. Fraaije and A. J. Minnaard, J. Org. Chem.,
2008, 73, 9482–9485; (b) A. K. Jain, Synlett, 2004, 2445–2446;
(c) P.-G. Ren, D.-X. Yan, X. Ji, T. Chen and Z.-M. Li, Nano-
technology, 2011, 22, 055705; (d) Y. Gao, D. Ma, C. Wang,
J. Guan and X. Bao, Chem. Commun., 2011, 47, 2432–2434.
In conclusion, an inexpensive and recyclable iron catalyst
system is introduced for the efficient reduction of nitro com-
pounds using hydrazine hydrate. Our convenient and easy to
c
10974 Chem. Commun., 2011, 47, 10972–10974
This journal is The Royal Society of Chemistry 2011