A P r a ctica l Rou te to
′-Am in o-3′-d eoxya d en osin e Der iva tives
a n d P u r om ycin An a logu es
3
Nhat Quang Nguyen-Trung, Oliver Botta,
Silvia Terenzi, and Peter Strazewski*,†
Institute of Organic Chemistry, University of Basel, St.
J ohanns-Ring 19, CH-4056 Basel, Switzerland
Received October 29, 2002
F IGURE 1. Puromycin (1) and 3′-amino-3′-deoxyadenosine
2).
(
Ab st r a ct : 3′-Aminoacylamino-3′-deoxyadenosines, ana-
logues of the antibiotic puromycin, have been synthesized
from adenosine. They key 3′-azido derivative 10 was ob-
tained through a 3′-oxidation/reduction/substitution proce-
dure. A modified purification protocol on a larger scale was
developed for the oxidation step using the Garegg reagent.
The coupling reaction between an Fmoc-L-amino acid and
the fully protected form of 3′-amino-3′-deoxyadenosine 11
furnished the aminoacylated compounds 12 in high yields.
The puromycin analogues were obtained in 10 steps and up
to 23% (14c) overall yield.
and a low overall yield. In 1989, Samano and Robins10
were the first to publish an efficient synthetic pathway
1
1
to puromycin. The latter recently reported details of
their nine-step synthesis to 3′-aminodeoxynucleoside 2
with an improved but, in our hands, still difficult
procedure for the problematic final N-debenzylation
reaction. We communicated our synthesis of 3′-alanyl-
1
2
amino-3′-deoxyadenosine from adenosine in 10 steps
and now report the optimized protocol for a general
synthesis of puromycin analogues 14.
Our synthetic pathway utilizes a protected form of 3′-
amino-3′-deoxyadenosine (2) synthesized from adenosine.
The 2′,5′-bis-O-TBDMS xylofuranosyladenine derivative
7 (Scheme 1) was synthesized in three steps as described
in the literature.13 Thus, the silylation furnished at most
60% of the desired 2′,5′-bis-O-silylated isomer 3. The
other products were 3′,5′-bis-O-silylated adenosine 4
The antibiotic puromycin (1, Figure 1), a metabolite
of Streptomyces alboniger, was first isolated by Porter and
co-workers in 1952. Puromycin has been and is being
1
extensively used for the elucidation of the mechanism of
2
3
the protein biosynthesis. Yarmolinsky and De la Haba
were the first to recognize close structural similarity
(34%) and 2′,3′,5′-tris-O-silylated adenosine 5 (traces); no
between puromycin and the aminoacyl end of aminoacyl-
tRNA. Further studies4-7 showed that puromycin inhibits
monosilylated product was isolated. To improve the yield
of 3, we isomerized compound 4 in a solution of 2.5%
protein synthesis by transferring the ribosomal nascent
(v/v) triethylamine in methanol, so 3 was obtained in 85%
peptide to the puromycin R-amino group. Five years ago,
yield after two isomerizations. The oxidation of the 3′-
a novel application of puromycin was introduced in the
1
3c
laboratories of Yanagawa and of Roberts and Szostak.8
hydroxyl group was achieved using the Garegg reagent.
The isolation of the ketone 6 on a >3 g scale, by
The principle, based on the peptidyl transfer ability of
puromycin, allows for the in vitro selection of proteins
or RNA strands via mRNA-peptide fusions using puro-
mycin as the point of covalent attachment. A number of
synthetic routes to puromycin and analogues have been
(
9) (a) Gerber, N. N.; Lechevalier, H. A. J . Org. Chem. 1962, 27,
1
1
731-1732. (b) Guarino, A. J .; Kredich, N. M. Biochim. Biophys. Acta
963, 68, 317-319. (c) Sowa, W. Can. J . Chem. 1968, 46, 1586-1589.
(d) Okruszek, A.; Verkade, J . G. J . Med. Chem. 1979, 22, 882-885. (e)
Ozols, A. M.; Azhayev, A. V.; Dyatkina, N. B.; Krayevsky, A. A.
Synthesis 1980, 557-559. (f) Ozols, A. M.; Azhayev, A. V.; Krayevsky,
A. A.; Ushakov, A. S.; Gnuchev, N. V.; Gottikh, B. P. Synthesis 1980,
559-561. (g) Saneyoshi, M.; Nishizaka, H.; Katoh, N. Chem. Pharm.
Bull. 1981, 29, 2769-2775. (h) Visser, G. M.; Schattenkerk, C.; van
Boom, J . H. Recl. Trav. Chim. Pays-Bas 1984, 103, 165-168. (i)
McDonald, F. E.; Gleason, M. M. J . Am. Chem. Soc. 1996, 118, 6648-
6659. (j) Baker, B. R.; J oseph, J . P.; Williams, J . H. J . Am. Chem. Soc.
1955, 77, 1-7. (k) Baker, B. R.; Schaub, R. E.; Williams, J . H. J . Am.
Chem. Soc. 1955, 77, 7-12. (l) Baker, B. R.; Schaub, R. E.; J oseph, J .
P.; Williams, J . H. J . Am. Chem. Soc. 1955, 77, 12-15. (m) Baker, B.
R.; Schaub, R. E.; Kissman, H. M. J . Am. Chem. Soc. 1955, 77, 5911-
5915. (n) Mengel, R.; Wiedner, H. Chem. Ber. 1976, 109, 433-443.
(10) Samano, M. C.; Robins, M. J . Tetrahedron Lett. 1989, 30, 2329-
2332.
9
reported, but most of them suffer from numerous steps
†
Present address: Laboratoire de Synth e` se de Biomol e´ cules,
B aˆ timent Eug e` ne Chevreul (5 e` me e´ tage), Universit e´ Claude Bernard
-
Lyon 1, Domaine Scientifique de la Doua, 43 boulevard du 11
novembre 1918, F-69622 Villeurbanne Cedex, France.
1) Porter, J . N.; Hewitt, R. I.; Hesseltine, C. W.; Krupka, G.; Lowery,
J . A.; Wallace, W. S.; Bohonos, N.; Williams, J . H. Antibiot. Chemother.
(
1
952, 2, 409-410.
2) (a) Suhadolnik, R. J . Nucleoside Antibiotics; Wiley: New York,
970; pp 1-50. (b) Suhadolnik, R. J . Nucleosides as Biological Probes;
(
1
Wiley: New York, 1979; pp 96-102.
3) Yarmolinsky, M. B.; De la Haba, G. L. Proc. Natl. Acad. Sci.
U.S.A. 1959, 45, 1721-1729.
4) Allen, D. W.; Zamecnik, P. C. Biochim. Biophys. Acta 1962, 55,
(
(
(11) Robins, M. J .; Miles, R. W.; Samano, M. C.; Kaspar, R. L. J .
Org. Chem. 2001, 66, 8204-8210.
(12) Botta, O.; Strazewski, P. Nucleosides Nucleotides 1999, 18,
721-723.
(13) (a) Ogilvie, K. K.; Beaucage, S. L.; Schifman, A. L.; Theriault,
N. Y.; Sadana, K. L. Can. J . Chem. 1978, 56, 2768-2780. (b) Sung, W.
L.; Narang, S. A. Can. J . Chem. 1982, 60, 111-120. (c) Garegg, P. J .;
Samuelsson, B. Carbohydr. Res. 1978, 67, 267-270. (d) Robins M. J .;
Sarker, S.; Samano, V.; Wnuk, S. F. Tetrahedron 1997, 53, 447-456.
(e) Robins, M. J .; Samano, V.; J ohnson, M. D. J . Org. Chem. 1990, 55,
410-412.
8
65-874.
(
(
(
5) Nathans, D.; Neidle, A. Nature 1963, 197, 1076-1077.
6) Gilbert, W. J . Mol. Biol. 1963, 6, 389-403.
7) Symons, R. H.; Harris, R. J .; Clarke, L. P.; Wheldrake, J . F.;
Elliott, W. H. Biochim. Biophys. Acta 1969, 179, 248-250.
(
8) (a) Roberts, R. W.; Szostak, J . W. Proc. Natl. Acad. Sci. U.S.A.
1
997, 94, 12297-12302. (b) Nemoto, N.; Miyamoto-Sato, E.; Husimi,
Y.; Yanagawa, H. FEBS Lett. 1997, 414, 405-408. (c) Liu, R.; Barrick,
J . E.; Szostak, J . W.; Roberts, R. W. Methods Enzymol. 2000, 318, 268-
9
3.
1
0.1021/jo026627c CCC: $25.00 © 2003 American Chemical Society
Published on Web 02/06/2003
2
038
J . Org. Chem. 2003, 68, 2038-2041