2384 Bull. Chem. Soc. Jpn., 74, No. 12 (2001)
1434, 1299, 877, 656, and 630 cm−1 1H NMR (300 MHz,
π-Interactions of Modified Nucleobases
;
Shatkin, and S. Ochoa, Proc. Natl. Acad. Sci., U.S.A., 73, 1559
DMSO-d6; Me4Si) δ 6.02 (2H, s), 8.03 (1H, s), 8.34 (2H, t, J = 7.2
Hz), 8.73 (1H, dd, J = 7.2 and 6.9 Hz), 10.47 (2H, dd, J = 6.9 and
1.2 Hz).
2-Amino-6-(4-dimethylaminopyridinio)purinate 8. 0.15 g
(0.51 mmol) of cation 3 were given on the resin to give a lemon-
yellow solid (0.12 g, 98%) Found: C, 50.92; H, 5.82; N, 34.16%.
Calcd for C12H13N7•1.5H2O: C, 51.06; H, 5.71; N, 34.73%; UV
(1976).
8
T. Ishida, M. Katsuta, M. Inoue, Y. Yamagata, and T.
Ken-ichi, Biochem. Biophys. Res. Commun., 115, 849 (1983).
C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 112,
9
5525 (1990).
10 C. A. Hunter, Chem. Soc. Rev., 1994, 101.
11 P. D. Lawley and P. Brookes, Nature, 192, 1081 (1961).
12 R. F. Newbold, W. Warren, A. S. C. Medcalf, and J. Amos,
Nature, 283, 596 (1980).
λ
max(CH2Cl2)/nm 385.8 and 300.8; λmax(MeCN)/nm 352.9, 305.1,
and 219.9; λmax(MeOH)/nm 353.4, 307.4, and 220.7; IR 3313,
3178, 1658, 1583, 1536, 1490, 1398, 1304, 1217, and 1157 cm−1
;
13 S. Metzger and B. Lippert, Angew. Chem., 108, 1321
(1996); Angew. Chem. Int. Ed. Engl., 35, 1228 (1996).
14 A. Schmidt, M. K. Kindermann, P. Vainiotalo, and M.
Nieger, J. Org. Chem., 64 (1999); A. Schmidt, M. K. Kindermann,
and M. Nieger, Heterocycles, 51, 237 (1999); A. Schmidt and M.
K. Kindermann, J. Org. Chem., 62, 3910 (1997).
15 A. Schmidt and M. Nieger, J. Chem. Soc., Perkin Trans 1,
1999, 1325; M. Mäkinen, A. Schmidt, P. Vainiotalo, Eur. J. Mass
Spectrom., 6, 259 (2000); A. Schmidt and M. Nieger, Heterocy-
cles, 51, 2119 (1999); A. Schmidt and M. K. Kindermann, J. Org.
Chem., 63, 4636 (1988); A. Schmidt, Heterocycles, 48, 865
(1998); H. Wamhoff and A. Schmidt, J. Org. Chem., 58, 6976
(1993); H. Wamhoff and A. Schmidt, Heterocycles, 35, 1055
(1993); H. Wamhoff, A. Schmidt, and M. Nieger, Tetrahedron
Lett., 1991, 4473.
1H NMR (300 MHz, DMSO-d6; Me4Si) δ 3.32 (6H, s), 5.90 (2H,
s), 7.29 (2H, d, J = 8.2 Hz), 7.89 (1H, s), 9.77 (2H, d, J = 8.2
Hz); MS m/z (FAB, mNBA) 257.3 (M++2, 91) and 40.1 (100).
2-Chloro-6-(1-pyridinio)purinate 9. 0.15 g (0.55 mmol) of
cation 5 were used to give a yellow solid (0.12 g, 95%), mp > 300
°C (from EtOH) Found C, 39.94; H, 4.65; N, 22.89%. Calcd for
C10H6ClN5: C, 39.54; H, 4.65; N, 23.05%; UV λmax(MeCN)/nm
374.2; IR 1605, 1526, 1479, 1376, 1306, and 1183 cm−1; 1H NMR
(300 MHz, DMSO-d6; Me4Si) δ 8.38 (2H, m), 8.42 (1H, s), 8.82
(1H, tt, J = 7.8 Hz), 10.43 (2H, m); 13C NMR (75 MHz, DMSO-
d6; Me4Si) δ 125.64, 127.80, 140.95, 142.43, 146.26, 148.24,
163.05, and 170.85; MS m/z (FAB, mNBA) 232.4.
2-Chloro-6-(4-dimethylpyridinio)purinate 10. 0.15 g (0.50
mmol) of the cation 6 were given on the resin to give a yellow sol-
id (0.12 g, 95%), mp > 300 °C (from water). Found: C, 36.51; H,
4.36; N, 18.79%. Calcd for C12H11ClN6•6.5H2O: C, 36.78; H,
6.17; N, 21.44%; UV λmax(MeCN)/nm 344.1, 287.3, and 257.4; IR
1654, 1585, 1527, 1445, 1388, 1295, 1228, 1181, 1142, and 987
cm−1; 1H NMR (300 MHz, DMSO-d6; Me4Si) δ 7.29 (2H, d, J =
8.4 Hz), 8.23 (1H, s), 9.73 (2H, d, J = 8.4 Hz); MS m/z (FAB,
mNBA) 275.6.
16 P. A. Searle and T. F. Molinski, J. Org. Chem., 60, 4296
(1995).
17 For an alternative synthesis of 3 and 7, see: B. Skalski, S.
Paszyk, R. Adamiak, R. P. Steer, and R. E. Verrall, Can. J. Chem.,
68, 2164 (1990).
18 W. D. Ollis, S. P. Stanforth, and C. A. Ramsden, Tetrahe-
dron, 41, 2239 (1985).
19 J. F. Lefevre, R. Ehrlich, M. C. Kilhoffer, and P. Remy,
FEBS Lett., 114, 219 (1980).
20 J. M. Jallon, Y. Risler, C. Schneider, and J. M. Thierry,
FEBS Lett., 31, 251 (1973).
The Deutsche Forschungsgemeinschaft DFG and the Fonds
der Chemischen Industrie are acknowledged for generous fi-
nancial support.
21 B. Pullman and A. Pullman, Proc. Natl. Acad. Sci. U.S.A.,
44, 1197 (1958).
22 PM3-calculations23 were carried out using MOPAC 6.024
on a Convex 3440. The structures were first optimized with the
default gradient requirements and subsequently refined with the
options EF DMAX = 0.05, GNORM = 0.01, SCFCRT = 1 ×
References
1
J. N. Peng, X.-Z. Feng, Q.-T. Zheng, and Z. T. Liang, Phy-
tochemistry, 46, 1119 (1997); M. D. Menachery, H. M. Mandell,
S. A. DeSaw, N. A. DeAntonio, A. J. Freyer, and L. B. Killmer, J.
Nat. Prod., 60, 1328 (1997); M. Lounasmaa, P. Hanhinen, and S.
Lipponen, Heterocycles, 43, 1365 (1996); N. A. Hughes and H.
Rapoport, J. Am. Chem. Soc., 80, 1604 (1958).
10−15
.
23 J. J. P. Stewart, J. Comput. Chem., 10, 209 (1989).
24 J. J. P. Stewart, QCPE, No. 455, Department of Chemistry,
Bloomington, IN, 1989.
25 Given is the vectorial sum Σ of the dipol moments on the x-
[N(1)–C(2)], y-[perpendicular to x on N1] and z-axis [perpendicu-
lar to the xy-plane]. Σ(m7G) = 9.195 D [x: 3.542 D, y: 8.462 D,
z: −0.627 D]. Σ(8b) = −14.078 D [x: −13.538 D, y: −3.856 D,
z: 0.200 D].
2
T. Jahn, G. M. König, A. D. Wright, G. Wörheide, and J.
Reitner, Tetrahedron Lett., 38, 3883 (1997).
J. Quetin-Leclercq, P. Couke, C. Delaude, R. Warin, R.
Bassleer, and L. Angenot, Phytochemistry, 30, 1697 (1991).
3
4
5
L. Angenot and A. Denoël, Planta Medica, 23, 26 (1973).
A. A. Ali, H. M. Sayed, O. M. Abdallah, and W. Steglich,
Phytochemistry, 25, 2399 (1986).
J. A. McCloskey and S. Nishimura, Acc. Chem. Res., 10,
26 T. Ishida, M. Shibata, K. Fujii, and M. Inoue, Biochemis-
try, 22, 3571 (1983).
6
403 (1977); P. A. Limbach, P. F. Crain, and J. A. McCloskey, Nu-
cleic Acids Res., 22, 2183 (1994); R. Liou and T. Blumenthal,
Mol. Cell Biol., 10, 1764 (1990); G. Dirheimer, in “Modified Nu-
cleosides and Cancer,” ed by G. Glass, Springer-Verlag, Berlin
Heidelberg (1983), pp. 15–46; C. C. Hsu-Chen and D. T. Dubin,
Nature, 264, 190 (1976); A. G. Saponara and M. D. Enger, Na-
ture, 223, 1365 (1969).
27 T. Ishida, S. Ibe, and M. Inoue, J. Chem. Soc., Perkin
Trans. ꢀ, 1984, 297; R. P. Ash, J. R. Herriott, and D. A. Deranleau,
J. Am. Chem. Soc., 99, 4471 (1977); T. Ishida, K. Tomita, and M.
Inoue, Arch. Biochem. Biophys., 2000, 492 (1980); J. R. Herriott,
A. Camerman, and D. A. Deranleau, J. Am. Chem. Soc., 96, 1585
(1974).
28 W. Saenger, “Principles of Nucleic Acid Structure,” in
“Springer Advanced Texts in Chemistry,” ed by C. R. Cantor,
Springer Verlag, New York (1984).
7
D. A. Shafritz, J. A. Weinstein, B. Safer, W. C. Merrick, L.
A. Weber, E. D. Hickey, and C. Baglioni, Nature, 261, 291 (1976);
W. Filipowicz, Y. Furuichi, J. M. Sierra, S. Muthukrishnan, A. J.