Article
Shukla et al.
NMR Spectra (d value in ppm); d (Ar-H), 8.68-7.80 (6H,
m); d (S-CH2), 3.66 (16H, m), 3.46 (8H, m), 2.59 (20H, m);
d (S-C-CH2), 3.33 (24H, s), 2.18 (20H, m); d (CH2), 2.75
(2H, s); 13C{1H}-NMR Spectra (d value in ppm); d (Ar-C),
127.5-146.6; d (S-C), 58.8, 57.4, 56.6; d (CH2), 39.7; d
(S-C-C), 26.6, 25.5, 24.3; FAB-Mass [M+H]+ m/z = 1452;
Dm at 25 °C (W-1 cm2 mol-1): 64 in water. Calcd for
C47H82N2S9O9Cl4Ru2 (Mt = 1451): C, 38.89; H, 5.69; N,
1.93; S, 19.88. Found: C, 38.91; H, 5.71; N, 2.01; S, 19.90.
ence College, Jabalpur (M.P.) and Head, Department of
Chemistry, Govt. Model Science College, Jabalpur (M.P.)
for providing Laboratory facilities. We are thankful to
SAIF, CDRI, Lucknow for C, H, N, S analysis and FAB-
1
mass spectra and DMSRDE, Kanpur for recording H-
NMR, 13C{1H}-NMR, spectra. We are indebted to HOD
Chemistry, RDVV, Jabalpur (M.P.) for their help in re-
cording FT-IR spectra.
+
Synthesis of [H(tmso)]2 [{trans-RuCl4(tmso)}2(m-5,5¢-
methylenebis(pyridine)]2-; Complex 7
REFERENCES
1. Sava, G.; Alessio, E.; Bergamo, A.; Mestroni, G. Top. Biol.
Inorg. Chem. 1999, 1, 143.
The precursor [H(tmso)]+[trans-RuCl4(tmso)2]- was
prepared according to literature procedure.45 Recrystal-
lized [H(tmso)2]+[trans-RuCl4(tmso)2]-, (0.0750 g, 0.134
mmol) was dissolved in methanol in a two neck flask. The
ligand 5,5¢-methylenebis(pyridine), (0.0229 g, 0.134
mmol) dissolved in methanol (~5 mL) was added to the
above solution and stirred for 1 h. Brown colour solution
was obtained. To this solution, recrystallized [H(tmso)]+
[trans-RuCl4(tmso)2]- (0.0750 g, 0.134 mmol) dissolved in
methanol (~5 mL) was added and stirred for 14 h. The col-
our changed into dirty brown. The reaction mixture was
vacuum evaporated to yield the light yellow colour solid,
which was recrystallized from 2:1:1 ethanol-methanol-wa-
ter (v/v) mixture. Yield; 0.110 g (76%); Mpd; 135 oC. Elec-
tronic Spectra (lmax, nm (e in M-1cm-1) in water; 569 (73),
448 (146), 401 (522), 303 (831); Selected infrared absorp-
tion (KBr, cm-1): n(CH2), 2865 (sh), 2835 (s); n(C=C) +
(C=N), 1622 (s), 1579 (s), 1542 (s); n(SO), 1116 (s), 1026
(s); n(Ru-S), 422 (s); FAB-Mass [M+H]+ m/z = 1075; Dm at
25 °C (W-1 cm2 mol-1): 116 in water. Calcd for
C27H44N2S4O4Cl8Ru2 (Mt = 1074): C, 30.18; H, 4.13; N,
2.61; S, 11.94. Found: C, 30.19; H, 4.16; N, 2.68; S,11.95.
2. Berger, M. R.; Garzon, F. T.; Keppler, B. K.; Schmal, D. Anti
Cancer Res. 1989, 9, 761.
3. Alessio, E.; Mestroni, G.; Bergamo, A.; Sava, G. Met. Ions,
Biol. Syst. 2004, 42, 323.
4. Keppler, B. K.; Rupp, W.; Juhl, U. W.; Endres, E.; Niebl, R.;
Balzer, W. Inorg. Chem. 1987, 26, 4366.
5. Keppler, B. K.; Berger, M. R.; Henn, M. H. Cancer Treat
Rev. 1990, 17, 261.
6. Reisner, E.; Arion, V. B.; Guides da siliva, M. F. C.; Lichten
ecker, R.; Eichinger, A.; Keppler, B. K.; Kukushkin, V. Yu.;
Pombeiro, A. J. L. Inorg. Chem. 2004, 43, 7083.
7. Abdel Ghany Shoair, F.; Ramadan Mohamed, H. J. Coord.
Chem. 2007, 60(11), 1279-1289.
8. Centinkaya, B.; Ozdemir, I.; Binbasioglu, B.; Durmaz, R.;
Gunal, S. Arzneimittelforschung 1999, 49(6), 538-540.
9. Turel, I.; Kljun, J.; Perdih, F.; Morozova, E.; Bakuler, V.;
Kasyanenko, N.; Byl, J. A. W.; Osheroff, N. Inorg. Chem.
2010, 49(23), 10750-10752.
10. Thangadurai, T. D.; Jeong, S.; Yun, S.; Kim, S.; Kim, C.;
Lee, Y-III. Microchem. J. 2009, 95(2), 235-239.
11. Bensemann, I.; Gdaniec, M.; Polonski, T. New J. Chem.
2002, 26, 448.
12. Iengo, E.; Mestroni, G.; Geremia, S.; Calligaris, M.; Alessio,
E. J. Chem. Soc., Dalton Trans. 1999, 3361-3371.
13. Wright, J. A.; Brodie, C.; Glazer, E. C.; Luedtke, N. W.;
Schwab, L. E.; Tor, Y. Chem. Commun. 2004, 1018-1019.
14. Gijte, O. V.; Kirsch-De-Mesmaeker, A. A. J. Chem. Soc.,
Dalton Trans. 1999, 951-956.
CONCLUSION
Seven dinuclear ruthenium complexes have been
synthesized by the reaction of 5,5¢-methylenebis(pyridine),
spacer with different ruthenium precursor. Reaction of a
precursor with spacer ligand in 2:1 molar ratio replaced the
one sulphoxide and linked two metal centers. The ligand
and their complexes synthesized here are novel due to their
specific structure and biological activity. These complexes
are new and their characterization and chemical reactivity
may find importance in pharmaceuticals.
15. Brodkorb, A.; Kirsch-De-Mesmaeker, A. A.; Rutherford, T.;
Keene, F. R. Eur. J. Inorg. Chem. 2001, 2151-2160.
16. Dyson, P. J.; Sava, G. J. Chem. Soc., Dalton Trans. 2006,
1929-1933.
17. Alessio, E.; Balducci, G.; Calligaris, M.; Costa, G.; Attia, W.
M.; Mestroni, G. Inorg. Chem. 1991, 30, 609.
18. Bora, T.; Singh, M. M. Trans. Met. Chem. 1978, 3, 27.
19. Sharma, U. C.; Poddar, R. K. Polyhedron. 1988, 7(18), 1737.
20. Lever, A. B. P. Inorganic Electronic Spectroscopy, 2nd ed.;
Elsevier: Amsterdam, The Netherland, 1984.
21. Dutta, S.; Bhattacharya, P. K. Ind. J. Chem. 2003, 42(A),
262.
ACKNOWLEDGEMENT
We are thankful to our Principal Govt. Model Sci-
492
© 2012 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
J. Chin. Chem. Soc. 2012, 59, 485-493