7
8
9
0
1
H. Yoshida, M. G. Chaskar, Y. Kato and T. Hattori, J. Photo-
chem. Photobiol. A, Chem., 2003, 160, 47.
H. Yoshida, M. G. Chaskar, Y. Kato and T. Hattori, Chem.
Commun., 2002, 2014.
Y. Kato, N. Matsushita, H. Yoshida and T. Hattori, Catal.
Commun., 2002, 3, 99.
H. Yoshida, N. Matsuhita, Y. Kato and T. Hattori, J. Phys.
Chem. B, 2003, 107, 8355.
1
1
Scheme 3 Plausible model of photoactive sites on a silica-based
photocatalyst.
Y. Kato, H. Yoshida, A. Satsuma and T. Hattori, Microporous
Mesoporous Mater., 2002, 51, 223.
M. Anpo and M. Che, Adv. Catal., 1999, 44, 119.
1
1
2
3
transfer. Further study on this idea is required to get more
understanding of the electron charge transfer mechanism for
the photocatalytic field.
T. Lo
Lett., 1999, 38, 283.
T. Lopez, R. Gomez, M. E. Llanos, E. Garcı
J. Navarrete and E. Lopez-Salinas, Mater. Lett., 1999, 39, 51.
pez, R. Gomez, M. E. Llanos and E. Lopez-Salinas, Mater.
´ ´ ´
14
15
16
17
´
´
´
a-Figueroa,
´
T. Tanaka, H. Yoshida, K. Nakatsuka, T. Funabiki and
S. Yoshida, J. Chem. Soc., Faraday Trans., 1992, 88, 2297.
H. Yoshida, T. Tanaka, T. Funabiki and S. Yoshida, J. Chem.
Soc., Faraday Trans., 1994, 90, 2107.
Conclusion
Silica-supported magnesia promoted photoinduced direct
methane coupling. The highly dispersed magnesium oxide
species on silica would be the active sites responsible for both
exhibiting the fine structural photoemission spectra and the
photoactivity in the reaction.
The similar photoactivity and properties of the emission sites
in the silica-supported magnesia, the silica–alumina, and the
silica-supported zirconia suggest the general aspect on a silica-
based photocatalyst, as follows:
H. Yoshida, C. Murata and T. Hattori, J. Catal., 2000, 194, 364.
18 H. Yoshida, T. Tanaka, M. Yamamoto, T. Yoshida, T. Funabiki
and S. Yoshida, J. Catal., 1997, 171, 351.
19 H. Yoshida, T. Tanaka, M. Yamamoto, T. Funabiki and S.
Yoshida, Chem. Commun., 1996, 2125.
2
0
H. Yoshida, T. Shimizu, C. Murata and T. Hattori, J. Catal.,
003, 220, 226.
H. Yoshida, T. Yoshida, T. Tanaka, T. Funabiki, S. Yoshida,
2
2
1
T. Abe, K. Kimura and T. Hattori, J. Phys. IV, 1997, 7, C2–911.
22 B. Shelimov, V. Dellarocca, G. Martra, S. Coluccia and M. Che,
Catal. Lett., 2003, 87, 73.
(
i) The highly dispersed metal oxide species on silica having
Si–O–M linkages (M ¼ metal cation) that are generated by
desorption of hydroxyl groups on the silica surface at high
temperature would become the photoemission sites and the
active sites for the photoinduced direct methane coupling.
2
3
M. Anpo, Y. Yamada, Y. Kubokawa, S. Coluccia, A. Zecchina
and M. Che, J. Chem. Soc., Faraday Trans., 1988, 84, 751.
M. Anpo and Y. Yamada, Mater. Chem. Phys., 1988, 18, 465.
M. Anpo, M. Kondo, S. Coluccia, C. Louis and M. Che, J. Am.
Chem. Soc., 1989, 111, 8791.
2
2
4
5
(ii) These emission sites would be concerned with the activa-
tion of methane molecules in a similar way. Probably the
reactions would proceed with similar mechanisms.
26 Y. Kato, H. Yoshida and T. Hattori, Phys. Chem. Chem. Phys.,
000, 2, 4231.
2
H. Yoshida, T. Tanaka, A. Satsuma, T. Hattori, T. Funabiki and
S. Yoshida, Chem. Commun., 1996, 1153.
2
7
(iii) The photoexcitation of the species would be deeply
related to the Si–O bond moiety.
2
8
G. Mestl and H. Kno
lysis, ed. G. Ertl, H. Kno
heim, 1997, vol. 2, p. 539.
¨
zinger, Handbook of Heterogeneous Cata-
¨
zinger and J. Weitkamp, VCH, Wein-
2
3
9
0
S. W. Lee and R. A. Condrate Sr, J. Mater. Sci., 1988, 23, 2951.
Z. Dang, B. G. Anderson, Y. Amenomiya and B. A. Morrow,
J. Phys. Chem., 1995, 99, 14437.
Acknowledgements
This work was partially supported by a Grant-in-Aid for
Scientific Research on Priority Areas (417) from the Ministry
of Education, Culture, Sports, Science and Technology
(MEXT) of the Japanese Government. We acknowledge the
invaluable contribution by the reviewers.
3
1
2
B. Rakshe, V. Ramaswamy and A. V. Ramaswamy, J. Catal.,
1
996, 163, 501.
3
Y. Inaki, H. Yoshida, T. Yoshida and T. Hattori, J. Phys. Chem.
B, 2002, 106, 9098.
33 T. Tanaka, S. Matsuo, T. Maeda, H. Yoshida, T. Funabiki and
S. Yoshida, Appl. Surf. Sci., 1997, 121–122, 296.
3
4
5
H. Yoshida, C. Murata and T. Hattori, Chem. Commun., 1999,
551.
C. Murata, H. Yoshida and T. Hattori, Chem. Commun., 2001,
1
References
3
1
T. V. Choudhary, E. Aksoylu and D. W. Goodman, Catal. Rev.,
003, 45, 151.
Y. Xu and L. Lin, Appl. Catal. A, 1999, 188, 53.
Y. Xu, X. Bao and L. Lin, J. Catal., 2003, 216, 386.
H. Yoshida, N. Matsushita, Y. Kato and T. Hattori, Phys. Chem.
Chem. Phys., 2002, 4, 2459.
2412.
36 A. Ogata, A. Kazusaka and M. Enyo, J. Phys. Chem., 1986, 90,
5201.
37 H. Yoshida, Curr. Opin. Solid Mater. Sci., 2003, 7, 435.
38 L. Skuja, Solid State Commun., 1992, 84, 613.
´
39 Allison S. Soult, Duke D. Poore, Elizabeth I. Mayo and A. E.
2
2
3
4
5
6
H. Yoshida, Y. Kato and T. Hattori, Stud. Surf. Sci. Catal., 2000,
130, 659.
Y. Kato, H. Yoshida and T. Hattori, Chem. Commun., 1998, 2389.
Stiegman, J. Phys. Chem. B, 2001, 105, 2687.
40 C. Li, G. Xiong, J. Liu, P. Ying, Q. Xin and Z. Feng, J. Phys.
Chem. B, 2001, 105, 2993.
T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 5
P h y s . C h e m . C h e m . P h y s . , 2 0 0 5 , 7 , 1 9 5 – 2 0 1
201