Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
120-127.
played an important role in the HDC reaction on Ni-based
catalysts.23,24 For both Ni@PC and xNi-PC@SBA-15 catalysts, Ni
particles were in intimate contact with the carbonaceous
residual. Furthermore, smaller Ni particle had larger Ni-carbon
interfacial area due to more effective Ni-carbon contact. Thus,
stronger H-spillover effect could be expected on catalysts with
smaller Ni particle size. Accordingly, owing to the higher Ni
dispersion, xNi-PC@SBA-15 catalysts exhibited significantly
higher TOF values than Ni@PC. The crucial role of H-spillover
effect could be further verified by comparing the catalytic
performances of 1Ni-PC@SBA-15 and 1Ni@SBA-15 without
carbon residual. 1Ni@SBA-15 had similar Ni loading amount
and particle size with that of 1Ni-PC@SBA-15 (see Fig. 1 and
Table S1), whereas its conversion of 1,2-dichloroethane (24.5%)
was much lower than that of 1Ni-PC@SBA-15 (40.3%).
Consistently, the TOF value of 1Ni@SBA-15 was 28.86 h-1,
lower than that of 1Ni-PC@SBA-15 (42.04 h-1). H2-TPD results
showed that more effective formation of spilled hydrogens
was evoked on 1Ni-PC@SBA-15 than on 1Ni@SBA-15, clearly
confirming the important role of H-spillover effect.
In summary, we successfully prepared a novel Ni-PC
composite confined in SBA-15 (Ni-PC@SBA-15) by the confined
pyrolysis of nano-sized Ni-MOF-74 that was in-situ grown in
the mesopores of SBA-15, and introduced it for the gas phase
catalytic HDC reaction. In comparison with Ni-PC composite
prepared by direct pyrolysis of Ni-MOF-74 (Ni@PC), very small
Ni particles with even size distribution are achieved on Ni-
PC@SBA-15 due to the confinement effect from ordered
mesopores of SBA-15. Additionally, the intimate contact
between Ni particles and carbon in fine Ni-PC composite
3. (a) S. Li and J. Gong, Chem. Soc. Rev. 2D01O4I:,1403.1,03792/4D50-C7C205069.9(8bA)
Z. Li, M. Li, Z. Bian, Y. Kathiraser and S. Kawi, Appl. Catal., B,
2016, 188, 324-341.
4. (a) K. Shen, X. Chen, J. Chen and Y. Li, ACS Catal., 2016, 6,
5887-5903. (b) D. Ding, K. Shen, X. Chen, H. Chen, J. Chen, T. Fan,
R. Wu and Y. Li, ACS Catal., 2018, 8, 7879-7888. (c) K. Zhu, C.
Chen, S. Lu, X. Zhang, A. Alsaedi and T. Hayat, Carbon, 2019, 148,
52-63.
5. J. Carrasco, J. Romero, G. Abellán, J. Hernández-Saz, S. Molina,
C. Martí-Gastaldo and E. Coronado, Chem. Commun., 2016, 52,
9141-9144.
6. (a) P. Pachfule, B. Balan, S. Kurungot and R. Banerjee, Chem.
Commun., 2012, 48, 2009-2011. (b) A. Sachse, R. Ameloot, B.
Coq, F. Fajula, B. Coasne, D. Vos and A. Galarneau, Chem.
Commun., 2012, 48, 4749-4751. (c) C. Wu, M. Rathi, S. P.
Ahrenkiel, R. T. Koodali and Z. Wang, Chem. Commun., 2013, 49,
1223-1225. (d) Y. Zhang, X, Bo, C. Luhana, H, Wang, M, Li and L.
Guo, Chem. Commun., 2013, 49, 6885-6887. (e) S. Rojas-Buzo, P.
García-García and A. Corma, Catal. Sci. Technol., 2019, 9, 146-
156. (f) I. Luz, M. Soukri and M. Lail, Chem. Commun., 2018, 54,
8462-8465. (g) N. Martín, M. Dusselier, D.E. De Vos and F.G.
Cirujano, ACS Catal., 2019, 9, 44-48.
7. (a) X. Pan and X. Bao, Acc. Chem. Res., 2011, 44, 553-562. (b)
A. Ungureanu, B. Dragoi, A. Chirieac, C. Ciotonea, S. Royer, D.
Duprez, A.S. Mamede and E. Dumitriu, ACS Appl. Mater.
Interfaces, 2013, 5, 3010-3025. (c) F. Subhan, S. Aslam, Z. Yan, L.
Zhen, M. Ikram, R. Ullah, U.J. Etim and A. Ahmad, Chem. Eng. J.,
2018, 339, 557-565.
8. M. Díaz-García, Á. Mayoral, I. Díaz and M. Sánchez-Sánchez,
Cryst. Growth Des., 2014, 14, 2479-2487.
9. I. Luz, M. Soukri and M. Lail, Chem. Mater., 2017, 29, 9628-
favored highly effective formation of spilled hydrogens. As a 9638.
10. Z. Zhao, Z. Zuhra, L. Qin, Y. Zhou, L. Zhang, F. Tang and C. Mu,
Fuel Process Technol., 2018, 176, 276-282.
11. X. Ning, Y. Lu, H. Fu, H. Wan, Z. Xu and S Zheng, ACS Appl.
Mater. Interfaces, 2017, 9, 19335-19344.
12. S. A. FitzGerald, B. Burkholder, M. Friedman, J. B. Hopkins, C.
J. Pierce, J. M. Schloss, B. Thompson and J. L. C. Rowsell, J. Am.
Chem. Soc., 2011, 133, 20310-20318.
13. H. Jiang, Q. Wang, H. Wang, Y. Chen and M. Zhang, ACS Appl.
Mater. Interfaces, 2016, 8, 26817-26826.14.
14. H. Veisi, D. Kordestani and A. Faraji, J. Porous Mater., 2014,
result, Ni-PC@SBA-15 exhibited superior catalytic activity and
selectivity in the gas phase catalytic HDC of 1,2-dichloroethane
to ethylene. The findings in this work highlight that Ni-
PC@SBA-15 can be used as a highly active and selective
catalyst in gas phase catalytic HDC reaction. The study also
provides important knowledge to the fabrication of MOFs-
derived materials with high metal dispersion.
This work was supported by the Outstanding Youth
Foundation of Jiangsu Province of China (No. BK20190059) and
the National Natural Science Foundation of China (No. 21, 141-148.
15. D. J. Lee, Q. Li, H. Kim and K. Lee, Micropor. Mesopor. Mat.,
2012, 163, 169-177.
21976086).
16. S. Damyanova, B. Pawelec, K. Arishtirova and J.L.G. Fierro,
Int. J. Hydrogen Energ., 2012, 37, 15966-15975.
17. J. Villajos, G. Orcajo, C. Martos, J. Botas, J. Villacañas and G.
Calleja, Int. J. Hydrogen Energ., 2015, 40, 5346-5352.
18. (a) L. Yin, Y. Wang, G. Pang, Y. Koltypin and A. Gedanken, J.
Colloid. Interf. Sci., 2002, 246, 78-84. (b) C. Carrillo-Carrión, S.
Cárdenas, B.M. Simonet and M. Valcárcel, Chem. Commun.,
2009, 35, 5214-5226.
19. G. Yuan and M. Keane, Appl. Catal., B, 2004,52,301-314.
20. S. Schimpf, C. Louis and P. Claus, Appl. Catal. A: Gen., 2007,
318, 45-53.
21. Z. Gao, M. Dong, G. Wang, P. Sheng, Z. Wu, H. Yang, B.
Zhang, G. Wang, J. Wang and Y. Qin, Angew. Chem. Int. Edit.,
2015, 54, 9006-9010.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1. (a) B. Huang, C. Lei, C. Wei and G. Zeng, Environ. Int., 2014, 71,
118-138. (b) B.T. Meshesha, N. Barrabés, K. Föttinger, R.J.
Chimentāo, J. Llorca, F. Medina, G. Rupprechter and J.E. Sueiras,
Appl. Catal., B, 2012, 117-118, 236-245. (c) J.A. Ceccilia, A.
Infantes-Molina, E. Rodríguez-Castellón and A. Jiménez-López, J.
Hazard. Mater., 2013, 260, 167-175. (d) M. Martin-Martinez,
L.M. Gómez-Sainero, J. Bedia, A. Arevalo-Bastante and J.J.
Rodriguez, Appl. Catal., B, 2016, 184, 55-63.
22. Y. Zhao and Y. Chung, J. Catal., 1987, 106, 369-377.
23. M.A Keane and G. Tavoularis, React. Kinet. Catal. Lett., 2013,
78, 11-18.
24. J. Chen, J. Zhou, R. Wangand J. Zhang, Ind. Eng. Chem. Res.,
2009, 48, 3802-3811.
2. (a) M. A. Keane, ChemCatChem, 2011, 3, 800-821. (b) Y. Han,
J. Zhou, W. Wang, H. Wan, Z. Xu, S. Zheng and D. Zhu, Appl.
Catal., B, 2012, 125, 172-179. (c) R. Baran, I.I.Kamińska, A.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins