ORGANIC
LETTERS
2006
Vol. 8, No. 12
2547-2550
Copper-Mediated C−N Bond Formation
via Direct Aminolysis of Dithioacetals
Jing Kang, Fushun Liang,* Shao-Guang Sun, Qun Liu,* and Xi-He Bi
Department of Chemistry, Northeast Normal UniVersity, Changchun 130024, China
Received March 30, 2006
ABSTRACT
Mediated by copper acetate, an efficient approach to the C−N bond formation via direct aminolysis of dithioacetals 2 and 5 with ammonia,
primary or secondary amines are developed under mild conditions. Enaminones 3 and 6 were thus obtained in high to excellent yields with
high chemoselectivity. This type of aminolysis reaction presents a new synthetic application of the dithioacetal functionality.
Dithioacetals, which are easily obtained by the condensation
of aldehydes/ketones with thiols,1 odorless thiol equivalents,2
or 1,3-propanedithiol copolymers,3 have proven to be very
useful in organic synthesis. Besides its use as a latent
carbonyl,1-3 methylene group4 and an umpolung of the
carbonyl group (dithiane method according to Seebach),5,6
the synthetic potential of the dithioacetal functionality has
been widely expanded in recent years. For example, Luh and
co-workers demonstrated the nickel-catalyzed olefination
reactions of benzylic, allylic, aliphatic, and propargylic
dithioacetals (which function as germinal dication synthons)
with Grignard reagents7 and the synthesis of furans, pyrroles,
and oligoaryls with propargylic dithioacetals as zwitterion
synthons.8 Takeda et al. reported the desulfurizative meta-
lation of dithioacetals to form titanium-alkylidens species
which could produce a C-C double bond with aldehydes,
ketones, and esters.9 Additionally, the dithiane-/trithiane-
based photolabile scaffolds for molecular recognition10 and
some useful transformations11 have also been reported.
In our research on the exploration of the synthetic
applications of functionalized ketene dithioacetals,12,13 a series
(1) (a) Kocienski, P. J. Protecting Groups; Thieme: Stuttgart, 1994. (b)
Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic Synthesis,
3rd ed.; John Wiley and Sons: New York, 1999.
(2) (a) Liu, Q.; Che, G.; Yu, H.; Liu, Y.; Zhang, J.; Zhang, Q.; Dong,
D. J. Org. Chem. 2003, 68, 9148. (b) Yu, H.; Liu, Q.; Yin, Y.; Fang, Q.;
Zhang, J.; Dong, D. Synlett 2004, 999. (c) Dong, D.; Ouyang, Y.; Yu, H.;
Liu, Q.; Liu, J.; Wang, M.; Zhu, J. J. Org. Chem. 2005, 70, 4535-4537.
(3) (a) Bertini, V.; Lucchesini, F.; Pocci, M.; De Munno, A. J. Org.
Chem. 2000, 65, 4839-4842. (b) Bertini, V.; Lucchesini, F.; Pocci, M.;
Alfei, S.; De Munno, A. Synlett 2003, 1201-1203.
(4) Hauptmann, H.; Walter, W. F. Chem. ReV. 1962, 62, 347-404.
(5) For reviews, see: (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1969,
8, 639-649. (b) Grobel, B. T.; Seebach, D. Synthesis 1977, 357-402. (c)
Seebach, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 239-258. (d) Bulman
Page, P. C.; van Niel, M. B.; Prodger, J. C. Tetrahedron 1989, 45, 7643-
7677.
(6) Selected examples: (a) Smith, A. B., III.; Pitram, S. M.; Gaunt, M.
J.; Kozmin, S. A. J. Am. Chem. Soc. 2002, 124, 14516. (b) Smith, A. B.,
III.; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.;
Brook, C. S.; Murase, N.; Nakayama, K. Angew. Chem., Int. Ed. 2001, 40,
196. (c) Tyrrell, E.; Skinner, G. A.; Janes, J.; Milsom, G. Synlett 2002,
1073. (d) Nakamura, S.; Ito, Y.; Wang, L.; Toru, T. J. Org. Chem. 2004,
69, 1581-1589.
(7) (a) Luh, T.-Y.; Ni, Z.-J. Synthesis 1990, 89. (b) Ni, Z.-J.; Luh, T.-Y.
J. Org. Chem. 1991, 56, 4035. (c) Wong, K.-T.; Luh, T.-Y. J. Am. Chem.
Soc. 1994, 116, 8920. (d) Luh, T.-Y. J. Organomet. Chem. 2002, 653, 209.
(e) Luh, T.-Y. Acc. Chem. Res. 1991, 24, 257. (f) Luh, T.-Y.; Leung, M.-
k.; Wong, K.-T. Chem. ReV. 2000, 100, 3187-3204.
(8) For a microreview, see: Luh, T.-Y.; Lee, C.-F. Eur. J. Org. Chem.
2005, 3875-3885.
(9) (a) Horikawa, Y.; Watanabe, M.; Fujiwara, T.; Takeda, T. J. Am.
Chem. Soc. 1997, 119, 1127. (b) Breit, B. Angew. Chem., Int. Ed. 1998,
37, 453. (c) Takeda, T.; Kuroi, S.; Yanai, K.; Tsubouchi, A. Tetrahedron
Lett. 2002, 43, 5641. (d) Huang, L.-F.; Huang, C.-H.; Stulgies, B.; de
Meijere, A.; Luh, T.-Y. Org. Lett. 2003, 5, 4489.
(10) (a) Wan, Y. Q.; Angleson, J. K.; Kutateladze, A. G. J. Am. Chem.
Soc. 2002, 124, 5610. (b) Kurchan, A. N.; Kutateladze, A. G. Org. Lett.
2002, 4, 4129. (c) Sasson, R.; Hagooly, A.; Rozen, S. Org. Lett. 2003, 5,
769. (d) Chiba, K.; Uchiyama, R.; Kim, S.; Kitano, Y.; Tada, M. Org. Lett.
2001, 3, 1245.
(11) (a) Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishi, K.; Mizushima,
Y.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 15423-
15430. (b) Padwa, A.; Ginn, J. D.; McClure, M. S. Org. Lett. 1999, 1,
1559-1561. (c) Takeda, T.; Yatsumonji, Y.; Tsubouchi, A. Tetrahedron
Lett. 2005, 46, 3157-3160. (d) Chiba, K.; Uchiyama, R.; Kim, S.; Kitano,
Y.; Tada, M. Org. Lett. 2001, 3, 1245-1248.
10.1021/ol060763c CCC: $33.50
© 2006 American Chemical Society
Published on Web 05/16/2006