Paper
Dalton Transactions
Notes and references
1 (a) B. R. Von, J. Appl. Toxicol., 1995, 15, 483;
(b) G. K. Balendiran, R. Dabur and D. Fraser, Cell Biochem.
Funct., 2004, 22, 343; (c) T. W. Clarkson and L. Magos,
Crit. Rev. Toxicol., 2006, 36, 609; (d) X. M. Meng, L. Liu and
Q. X. Guo, Prog. Chem., 2005, 17, 45.
2 (a) T. Takeuchi, N. Morikawa, H. Matsumoto and
Y. Shiraishi, Acta Neuropathol., 1962, 2, 40; (b) W. Y. Boadi,
J. Urbach, J. M. Brandes and S. Yannai, Environ. Res., 1992,
57, 96; (c) M. Harada, Crit. Rev. Toxicol., 1995, 25, 1;
(d) A. C. Bittner Jr., D. Echeverria, J. S. Woods,
H. V. Aposhian, C. Naleway, M. D. Martin, R. K. Mahurin,
N. J. Heyer and M. Cianciola, Neurotoxicol. Teratol., 1998,
20, 429.
3 (a) J. L. Fan, M. M. Hu, P. Zhan and X. J. Peng, Chem. Soc.
Rev., 2013, 42, 29; (b) X. Q. Chen, G. D. Zhou, X. J. Peng
and J. Yoon, Chem. Soc. Rev., 2010, 39, 2120; (c) Z. C. Xu,
J. Yoon and D. R. Spring, Chem. Soc. Rev., 2010, 39, 1996;
(d) Z. P. Liu, W. J. He and Z. J. Guo, Chem. Soc. Rev., 2013,
42, 1568; (e) L. Yuan, W. Y. Lin, Y. N. Xie, B. Chen and
S. Zhu, J. Am. Chem. Soc., 2012, 134, 1305; (f) C. Streu and
E. Meggers, Angew. Chem., Int. Ed., 2006, 45, 5645;
(g) M. Schaferling, Angew. Chem., Int. Ed., 2012, 51, 3532;
(h) F. Qian, C. L. Zhang, Y. M. Zhang, W. J. He, X. Gao,
P. Hu and Z. J. Guo, J. Am. Chem. Soc., 2009, 131, 1460;
(i) X. M. Meng, S. X. Wang, Y. M. Li, M. Z. Zhu and
Q. X. Guo, Chem. Commun., 2012, 48, 4196; ( j) S. X. Wang,
X. M. Meng and M. Z. Zhu, Tetrahedron Lett., 2011, 52, 2840.
4 (a) E. M. Nolan and S. J. Lippard, Chem. Rev., 2008, 108,
3443; (b) X. M. Meng, L. Liu, H. Y. Hu, M. Z. Zhu and
Q. X. Guo, Tetrahedron Lett., 2006, 47, 7961; (c) A. K. Atta,
S. B. Kim, J. Heo and D. G. Cho, Org. Lett., 2013, 15, 1072;
(d) W. M. Xuan, C. Chen, Y. T. Cao, W. H. He, W. Jiang,
K. J. Liu and W. Wang, Chem. Commun., 2012, 48, 7292;
(e) W. Y. Lin, X. W. Cao, Y. D. Ding, L. Yuan and L. L. Long,
Chem. Commun., 2010, 46, 3529; (f) S. Yoon, A. E. Albers,
A. P. Wong and C. J. Chang, J. Am. Chem. Soc., 2005, 127,
16030; (g) G. K. Darbha, A. K. Singh, U. S. Rai, E. Yu,
H. T. Yu and P. C. Ray, J. Am. Chem. Soc., 2008, 130, 8038.
5 (a) J. R. Lokowize, Principles of FluorescenceSpectroscopy,
Springer, New York, 3rd edn, 2006; (b) B. Valeur, Molecular
Fluorescence, Wiley-VCH, New York, 2nd edn, 2005;
(c) X. Q. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Yoon,
Chem. Rev., 2012, 112, 1910; (d) H. N. Kim, W. X. Ren,
J. S. Kim and J. Yoon, Chem. Soc. Rev., 2012, 41, 3210.
6 R. P. Haugland, The Handbook: A Guide to Fluorescent
Probes and Labeling Technologies, the Tenth Edition, Mole-
cular Probes, Invitrogen Corp., Karlsbad, CA, 2005.
Fig. 9 Confocal fluorescence, (a) fluorescence image of HeLa cells labeled with
15 μM RNS after 30 min of incubation at 37 °C, washed with PBS buffer.
(b) Fluorescence image of HeLa cells treated with RNS and then 30 μM
Hg(ClO4)2 aqueous solution for 2.5 h at 37 °C. (c) Bright-field image of HeLa
cells. (d) The overlay of (b) and (c).
the cells were viable throughout the imaging experiments
(Fig. 9c). Moreover, the MTT assay demonstrates that the cell
viability remains more than 95% after treatment with 10 μM
RNS after 24 h of incubation (Fig. S5, ESI†). These results
demonstrate that RNS can be used for detecting intracellular
Hg2+ with almost no cytotoxicity.
Conclusion
In summary, we have developed a fully water soluble rhod-
amine-based probe (RNS) for Hg2+ which showed real-time
and selective “turn-on” fluorescent response to Hg2+. RNS
showed reversible colorimetric and fluorescent response to
Hg2+ in an aqueous solution. RNS can work well in neutral
aqueous buffer solution containing less than 1% organic
cosolvent. Compared with rhodamine-based probes previously
reported, the amount of organic cosolvent in the detecting
media was greatly reduced. Finally, the confocal fluorescence
image confirmed that RNS is cell permeable and can be used
for monitoring intracellular Hg2+ in living cells with low
cytotoxicity.
Acknowledgements
7 (a) Y. Shiraishi, S. Sumiya, Y. Kohno and T. Hirai, J. Org.
Chem., 2008, 73, 8571; (b) X. Zhang, Y. Xiao and X. H. Qian,
Angew. Chem., Int. Ed., 2008, 47, 8025; (c) M. Kumar,
N. Kumar, V. Bhalla, H. Singh, P. R. Sharma and T. Kaur,
Org. Lett., 2011, 13, 1422; (d) Y. K. Yang, K. J. Yook and
J. Tae, J. Am. Chem. Soc., 2005, 127, 16760; (e) P. Mahato,
S. Saha, E. Suresh, R. Di Liddo, P. P. Parnigotto,
This work was supported by NSFC (21102001, 21102002,
21102083 and 21272223), Natural Science Foundation of
Education Department of Anhui Province (KJ2010A028,
KJ2011A018), 211 Project of Anhui University, Youth Science
Foundation of Anhui University (2009QN014A) and Doctor
Research Start-up Fund of Anhui University.
14824 | Dalton Trans., 2013, 42, 14819–14825
This journal is © The Royal Society of Chemistry 2013