100
A. Pineau et al. / Thermochimica Acta 447 (2006) 89–100
1. The reduction of hematite in magnetite by H2 is characterized
by an apparent activation energy of about 76 kJ/mol.
[9] M.J. Tierman, P.A. Barnes, G.M.B. Parkes, J. Phys. Chem. B 105 (2001)
220.
[10] H.Y. Lin, Y.W. Chen, C. Li., Thermochim. Acta 400 (1–2) (2003) 61.
[11] A. Jess, H. Depner, Steel Res. 69 (3) (1998) 77.
[12] E. Mazanek, M. Wyderko, Met.-Odlew. Met. (1974) 55.
[13] M.H.A. Elhamid, M.M. Khader, A.E. Mahgoub, B.E.L. Anadouli, B.G.
Ateya, J. Solid State Chem. 123 (2) (1996) 249.
[14] (a) N. Rudenko, S.T. Rostovtsev., Izv. V.U.Z. 4 (1959) 3;
(b) O.L. Koxtelov, S.T. Rostovtsev., Sta. 3 (1965) 209.
[15] J. Szekely, J.W. Evans, H.Y. Sohn., Gas-Solid Reactions, Academic
Press, New York, 1976, p. 115, 232.
[16] A. Ortega, Thermochim. Acta 284 (1996) 379.
[17] N. Gerard, J. Phys. E Sci. Instrum. 5 (1972) 524.
[18] V.P. Romanov, P.A. Tatsienko, L.F. Checherskaya, G.P. Basantsev, V.D.
Checherskii, Izv. Akad. Nauk SSSR, Neorganischeskie Materialy 7 (3)
(1971) 450.
2. The reductionpath of magnetitetoiron isfunction of thereac-
tion temperature. At temperatures lower than 420 ◦C, Fe3O4
is reduced directly to iron. At 450 < T < 570 ◦◦C, magnetite
¨
and wustite are present with iron. At T > 570 C, magnetite
¨
is fully reduced to wustite before its reduction to Fe.
3. The apparent activation energy for the reduction of Fe3O4 by
H2 decreases from 88 to 39 kJ/mol for temperatures lower
and higher than 420 ◦C.
4. Mathematical modeling of experimental data suggest that
the controlling mechanism is the two- and three-dimensional
growth of nuclei and by phase boundary reaction at higher
temperature.
[19] V.P. Romanov, L.F. Checherskaya, P.A. Tatsienko, Phys. Stat. Sol. A 15
(1973) 721.
5. The decrease of Ea around 420 ◦C could be attributed to the
annealing of defects of the crystalline structure of magnetite.
6. The reduction rate of magnetite with hydrogen is higher than
that obtained with CO.
[20] N.B. Gray, J. Henderson, TMS-AIME 236 (1966) 1213.
[21] W.M.M.C. Kewan, TMS-AIME 218 (1960) 2.
[22] J.M. Quets, M.E. Wadsworth, J.R. Lewis, TMS-AIME 218 (1960) 545.
[23] U. Colombo, F. Gazzarrini, G. Lanzaveccha, Mater. Sci. Ing. 2 (1967)
125.
[24] V.A. Roiter, V.A. Yuza, A.N. Kuzentsov, Zhur. Fiz. Khim. 25 (8) (1951)
960.
[25] D. Dobovisek, B. Korousic, Rudarsko-Metalurski Zbornik (2) (1968)
127.
7. The morphological study of the reduced samples of iron
oxides by H2 shows agglomeration of the reaction product at
temperatures higher than 420 ◦C. Reduction of these oxides
with CO does not generate compact iron layer.
[26] L.C. Dufour. Thesis, Dijon, 1965.
In spite of results obtained in this work, low temperature reduc-
tion of iron oxides with hydrogen is handicapped by lack of data
about the behavior of point and linear defects of iron oxides
as function of temperature that control its reactivity, the high
energy consumption and cost of hydrogen production.
[27] D. Papanastassiou, G. Bitsianes, Met. Trans. 4 (1973) 487.
[28] J.P. Hansen, G. Bitsianes, T.L. Joseph, B.F. Coke Oven and Raw Mater.
Conference (1960) 185.
[29] R.J. Fruehan, Met. Trans. 3 (1972) 2585.
[30] E.A. Gulbransen, K.F. Andrew, J. Electrochem. Soc. A (1958) 105.
[31] K. Hauffe, P. Kofstad, Z. Elektrochem. 59 (1955) 399.
[32] A. Galerie, M. Caillet, J. Besson, in: J. Wood, et al. (Eds.), 8th ISRS,
Gothenburg 14-19/6/1976, Plenum Press, 1977.
Acknowledgments
[33] J.A. Hedvall, Z. Anorg, Allgem. Chem. 61 (1924) 135.
[34] (a) H. Forestier, R. Lille, Comp. Rend. 204 (1937) 265, 1254;
(b) H. Forestier, R. Lille, Comp. Rend. 208 (1939) 891.
[35] H. Forestier, M. Daire, Akad. der Wissenschaftenundder Lit. (7) (1966)
705.
[36] A. Chakraborty, J. Magn. Magn. Mater. 204 (1999) 57.
[37] I. Gaballah, F. Jeannot, Ch. Gleitzer, C.R. Acad. Sci. Ser. C 280 (1975)
697.
Part of this work was performed in ‘Laboratoire de Chimie
du Solide’ of the University of Nancy, France. The authors thank
Dr. Ch. Gleitzer for his help and discussions. They also indebted
to Mrs. Ch. Richard for her kind help in technical and adminis-
tration work.
[38] I. Gaballah, C. Gleitzer, J. Aubry, in: J. Wood, et al. (Eds.), Reactivity
of Solids, Plenum Press, 1977, p. 391.
References
[39] E. Wicke, Chemie–Ingenieur Technic 29 (1957) 305.
[40] L. Bonnetain, G. Hoyant, Les Carbones, Masson, Paris, 1965, tome II,
290 pp.
[41] G. Naeser, W. Scholz, Kolloid-Zeitschrift 156 (1) (1958) 1.
[42] R. Schrader, W. Vogelsberger, Z. Chem. 9 (9) (1969) 354.
[43] B. Gillot, J. Tyranowicz, A. Rousset, Mater. Res. Bull. 10 (1975) 775.
[44] G. Fagherazzi, G. Lanzavecchia, Mater. Sci. Eng. 5 (2) (1970) 63.
[45] P.G. Fox, J. Soria-Ruiz, Proc. R. Soc. Lond. A 314 (1970) 429.
[46] F. Dabosi. Thesis, Paris, 1962.
[47] C. Venturello, C. Antonione, F. Bonaccorso, Trans. AIME 227 (1963)
1433.
[48] H. Hu, Recovery and Recrystallization of Metals, Interscience, New
York, 1963, p. 311.
[1] Anonymous, Hydrogen production, in: US Climate Change Technology
Program—Technology Options for the Near and Long Term, November,
2003, p. 75.
[2] L. Barreto, A. Makihira, K. Riahi, Int. J. Hydrogen Energy 28 (2003)
267.
[3] A. Carlson, Energy Policy 31 (2003) 951.
[4] M.V.C. Sastri, R.P. Viswanath, B. Viswanathan, Adv. Hydrogen Energy
2 (1981) 1279 (Hydrogen Energy Prog. 3).
[5] B. Viswanathan, R.P. Viswanath, M.V.C. Sastri, Trans. Indian Inst. Met-
als 32 (4) (1979) 313.
[6] O.J. Wimmers, P. Arnoldy, J.A. Moulijn, J. Phys. Chem. 90 (1986) 1331.
[7] G. Munteanu, L. Ilieva, D. Andreeva, Thermochim. Acta 291 (1997)
171.
[8] G. Munteanu, L. Ilieva, D. Andreeva, Thermochim. Acta 329 (2) (1999)
157.
[49] W.C. Leslie, Recrystallization, grain growth and textures, Am. Soc. Met.
(1967) 59.