538
Appl. Phys. Lett., Vol. 78, No. 4, 22 January 2001
Richter et al.
nate the two-terminal resistance measured in our experiment,
illustrating the enormous benefit of the pinning procedure.
In conclusion, we have demonstrated the assembly of
highly conductive palladium nanowires on a DNA template.
The estimated specific conductance of the nanowires is only
one order of magnitude smaller than for bulk palladium.
Thus, the present study provides a step towards realistic elec-
tronic elements based on biological templates by showing
the template capabilities of DNA. Moreover, the metalliza-
tion of the DNA templates opens new possible applications
of DNA wiring at elevated temperatures where native, un-
coated DNA molecules are no longer stable.
This research is supported by the Deutsche Forschungsge-
meinschaft Grant No. Le 747/24.
1
N. C. Seeman, Annu. Rev. Biophys. Biomol. Struct. 27, 225 ͑1998͒.
A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M.
2
P. Bruchez, and P. G. Schultz, Nature ͑London͒ 382, 609 ͑1996͒.
C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature
FIG. 3. Low voltage ͑1 kV͒ scanning electron microscope image of a single
palladium metallized DNA strand with a length of ϳ16 m corresponding
to the length of a -DNA molecule. The right-hand side of the strand con-
3
͑
London͒ 382, 607 ͑1996͒.
4
R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A.
Mirkin, Nature ͑London͒ 277, 1078 ͑1997͒.
R. F. Service, Science 277, 1036 ͑1997͒.
nects two gold electrodes over a SiO substrate. The inset shows a magni-
2
fication of the middle part with a diameter of 50 nm.
5
6
E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature ͑London͒ 391,
7
75 ͑1998͒.
7
8
C. A. Mirkin, MRS Bull. 25, 43 ͑2000͒.
J. L. Coffer, S. R. Bigham, X. Li, R. F. Pinizzotto, Y. Rho, G. Young, R.
M. Pirtle, and I. L. Pirtle, Appl. Phys. Lett. 69, 3851 ͑1996͒.
T. Torimoto, M. Yamashita, S. Kuwabata, T. Sakata, H. Mori, and H.
Yoneyama, J. Phys. Chem. B 103, 8799 ͑1999͒.
W. Pompe, M. Mertig, R. Kirsch, R. Wahl, L. C. Ciacchi, J. Richter, R.
Seidel, and H. Vinzelberg, Z. Metallkd. 90, 1085 ͑1999͒.
J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, and H.
K. Schackert, Adv. Mater. 12, 507 ͑2000͒.
M. R. Arkin, Science 273, 475 ͑1996͒.
Y. Okahata, T. Kobayashi, K. Tanaka, and M. Shimomura, J. Am. Chem.
Soc. 120, 6165 ͑1998͒.
J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-Beyerle, Proc.
Natl. Acad. Sci. U.S.A. 95, 12759 ͑1998͒.
E. Meggers, M. E. Michel-Beyerle, and B. Giese, J. Am. Chem. Soc. 120,
The latter value corresponds to the typical grain size of the
Pd metallization film and provides an upper estimate of the
electron mean free path assuming electron scattering at grain
boundaries to be the dominant mechanism. These consider-
9
10
11
4
Ϫ1
ations yield Ϸ10 Scm in agreement with calculated
2
1
from experimental data. From these calculations we con-
clude that the remaining contact resistance does not domi-
12
13
1
1
1
4
5
6
12950 ͑1998͒.
P. J. de Pablo, P. Moreno-Herrero, J. Colchero, J. G. Herrero, P. Herrero,
A. M. Bar o´ , P. Ordej o´ n, J. M. Soler, and E. Artocho, Phys. Rev. Lett. 85,
4
992 ͑2000͒.
1
1
1
2
2
2
2
2
7
8
9
0
1
2
3
4
P. T. Henderson, D. Jones, G. Hampikian, Y. Kann, and B. G. Shuster,
Proc. Natl. Acad. Sci. U.S.A. 96, 8353 ͑1999͒.
D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature ͑London͒
4
03, 635 ͑2000͒.
M. Mertig, R. Kirsch, W. Pompe, and H. Engelhardt, Eur. Phys. J. D 9, 45
1999͒.
M. Mertig, R. Kirsch, and W. Pompe, Appl. Phys. A: Mater. Sci. Process.
96, 723 ͑1998͒.
͑
1
J. Duguid, V. A. Bloomfield, J. Benevides, and G. J. Thomas, Jr., Bio-
phys. J. 65, 1916 ͑1993͒.
G. B. Onoa, G. Cervantes, V. Moreno, and M. Prieto, Nucleic Acids Res.
26, 1473 ͑1998͒.
A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, and F. Heslot, Sci-
ence 265, 2096 ͑1994͒.
D. Bensimon, A. Simon, V. Croquette, and A. Bensimon, Phys. Rev. Lett.
7
4, 4754 ͑1995͒.
2
2
5
6
H. K o¨ nig and G. Helwig, Z. Phys. 129, 491 ͑1951͒.
A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Appl. Phys.
Lett. 29, 596 ͑1976͒.
FIG. 4. Two-terminal current–voltage curves of the single, pinned nanowire
shown in Fig. 3 before ͑͒ and after ͑᭡͒ cutting, taken with a patch-clamp
amplifier ͑EPC9, Heka, Germany͒. The wire resistance is 743 ⍀ correspond-
2
2
2
7
8
9
A. Bechtold, M. Henny, C. Terrier, C. Strunk, C. Sch o¨ nenberger, J.-P.
Salvetat, J.-M. Bonard, and L. Forro, Appl. Phys. Lett. 73, 274 ͑1998͒.
H. Grabert and M. H. Devoret, Single Charge Tunneling ͑Plenum, New
York, 1992͒.
4
Ϫ1
ing to a minimum estimated specific conductivity of Ϸ2ϫ10 S cm
.
1
The inset shows the ohmic I–V characteristic of the nanowire down to 1
V. After cutting, the sample was insulating.
C. Kittel, Introduction to Solid State Physics ͑Wiley, New York, 1953͒.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
95.19.233.81 On: Sat, 04 Jan 2014 09:07:36
1