(
)
574
J. Kong et al.rChemical Physics Letters 292 1998 567–574
C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert,
G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley,
butions, thus producing a mixture of tube types. In
contrast, the fumed silica has an amorphous structure
Ž
.
Science 273 1996 483.
w
x
22 and an isotropic surface. We believe that active
w x
3
D.S. Bethune, C.H. Kiang, M.S. deVries, G. Gorman, R.
catalyst particles on this isotropic support are uni-
formly and closely distributed. Therefore, the SWNTs
nucleated on the close-by catalyst sites grow into
bundles to maximize the van der Waals interactions
between the walls of the nanotubes.
Ž
.
Savoy, J. Vazquez, R. Beyers, Nature 363 1993 605.
C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L.
Delachapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer,
w x
4
Ž
.
Nature 388 1997 756.
w x
Ž .
5
S. Iijima, MRS Bull. 19 1994 43.
w x
Ž .
G.G. Tibbetts, Appl. Phys. Lett. 42 1983 666.
6
A detailed understanding of the different transi-
tion metal-oxide catalysts is currently lacking and
requires future studies. We note that previously, Fe,
Ni, Co, and mixed NirCo catalysts have all success-
fully produced SWNTs in laser-ablation and arc-dis-
w x
Ž
.
7
G.G. Tibbetts, Carbon 27 1989 745.
w x
8
G.G. Tibbetts, in Carbon Fibers, Filaments and Composites,
Kluwer Academic, Amsterdam, 1990, p. 73.
w x
9
Ž
.
R.T.K. Baker, in: P. Walker, P. Thrower Eds. , Physics and
Chemistry of Carbon, Vol. 14, 1978, pp. 83.
w
w
x
x
Ž
.
10 R.T.K. Baker, Carbon 27 1989 315.
w
x
charge approaches 1–4,23,24 . Interestingly, in arc-
discharge, SWNTs have been synthesized using Fe
catalyst when methane is present in the discharge
11 R.T.K. Baker, N.M. Rodriguez, Catalytic Growth of Carbon
Nanofibers and Nanotubes, Symposium of the Materials
Research Society, Materials Research Society, 1994.
12 H.G. Tennent, Hyperion Catalysis International, USA, 1987.
13 C.E. Snyder, W.H. Mandeville, H.G. Tennent, L.K. Trues-
dale, Int. Pat. WO 89r07163, 1989.
14 H.J. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert,
w
w
x
x
w x
chamber 1 . Future work is also required to further
Ž .
explore 1 detailed pictures of nanotube growth as
Ž .
well as nucleation, 2 various catalyst compositions
and concentrations, 3 new types of catalyst support,
and 4 optimum growth conditions. The methane
w
x
Ž .
Ž
.
R.E. Smalley, Chem. Phys. Lett. 260 1996 471.
w
x
15 A. Fonseca, K. Hernadi, P. Piedigrosso, L.P. Biro, S.D.
Lazarescu, P. Lambin, P.A. Thiry, D. Bernaerts, J.B. Nagy,
Electrochem. Sci. Proc. 97–14, 1997, 884.
Ž .
CVD approach could bring new possibilities to
nanoscale science and technology.
w
x
Ž
.
16 H. Jaeger, T. Behrsing, Composites Sci. Tech. 51 1994
231.
w
w
x
Ž
.
17 L.C. Qin, S. Iijima, Mater. Lett. 30 1997 311.
Acknowledgements
x
Ž
.
18 G.G. Tibbetts, M.G. Devour, E.J. Rodda, Carbon 25 1987
367.
w
w
x
Ž
.
19 G.G. Tibbetts, J. Cryst. Growth 66 1984 632.
This work was in part supported by a Camille and
Henry Dreyfus New Faculty Award. We are grateful
to J. Brauman and J. Han for helpful discussions.
x
20 S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V.
Ž
.
Ivanov, J.B. Nagy, Science 265 1994 635.
w
w
w
x
21 Degusssa, Technical Bulletin N56.
22 Degussa, AEROSIL: Fumed Silica.
23 C.-H. Kiang, G. Wa III, R. Beyers, J.R. Salem, D.S. Bethune,
x
x
References
Ž
.
J. Phys. Chem. 98 1994 6612.
w
w
x
x
Ž
.
24 S. Seraphin, J. Electrochem. Soc. 142 1995 290.
25 K.L. Lu, R.M. Lago, Y.K. Chen, M.L.H. Green, P.J.F.
w x
Ž
.
1
w x
2
S. Iijima, T. Ichihashi, Nature 363 1993 603.
A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert,
Ž
.
Harris, S.C. Tsang, Carbon 34 1996 814.