14988 J. Phys. Chem. B, Vol. 109, No. 31, 2005
Rzepka et al.
TABLE 4: Hydrogen Storage Capacity of the Nanofiber
Samples As Measured with the Volumetric Adsorption
Apparatus in wt %
5. Conclusion
Within the framework of the study presented, we investigated
carbon nanofibers provided by the Rodriguez and Baker group
as well as nanofibers synthesized in our labs following the
procedures published by different research groups working in
this field. The batches comprise different structural and mor-
phological characteristics. The fibers were analyzed with respect
to their hydrogen uptake at room temperature in the pressure
range from 0 to 140 bar using gravimetric and volumetric
techniques. In some cases, additional activation procedures were
applied to the pristine fibers prior to the hydrogen storage
experiments. Within the experimental error of 0.1 wt %, we
obtained good agreement between the two high-precision
experimental techniques applied for quantification of hydrogen
uptake. However, no significant hydrogen uptake could be
detected for any of the CNF specimens investigated. With a
maximum uptake of 0.4 wt %, all experimental results can be
adequately explained by pure physical adsorption on the CNF
surface; no evidence for any other storage mechanism has been
found. We therefore were unable to confirm the data published
by other groups reporting hydrogen storage capacities for CNFs
above 3 wt %.
sample #1
pristine
50 bara
0.14
95 bar
0.33
140 bar
0.39
190 °C Ar
925 °C Ar
0.12
0.11 (0.19)
0.19
0.24 (0.26)
0.24
0.22 (0.36)
sample #2
pristine
50 bara
0.10
95 bar
0.22
140 bar
0.29
190 °C Ar
925 °C Ar
0.05
0.11 (<0.10)
0.06
0.15 (<0.10)
0.25
0.14 (<0.10)
sample #3
pristine
190 °C Ar
925 °C Ar
50 bara
0.04 (<0.10)
0.07
95 bar
0.03 (<0.10)
0.05
140 bar
-0.09 (<0.10)
-0.05
-0.08 (<0.10)
-0.12 (<0.10)
-0.20 (<0.10)
sample #4
190 °C He
50 bara
0.03
95 bar
0.08
140 bar
0.09
sample #5
pristine
190 °C Ar
50 bara
0.00
-0.03
95 bar
0.00
-0.03
140 bar
-0.07
-0.04
sample #6
190 °C He
50 bara
0.03
95 bar
0.06
140 bar
0.20
sample #7
pristine
50 bara
0.13
95 bar
140 bar
Acknowledgment. The financial support from the German
Federal Ministry of Economics and Labor (BMWi) through
Grant 0327304 is kindly acknowledged. We would like to thank
R.T.K. Baker, and N.M. Rodriguez for providing us with
different carbon nanofiber material and the information about
the adequate fiber pretreatment procedure. The authors would
also like to acknowledge Prof. W. Kiefer and co-workers at
Physical Chemistry, Wu¨rzburg University, for providing the
Raman characterization.
250 °C
-0.14
50 bara
0.03
50 bara
0.13
sample #8
925 °C Ar
95 bar
0.04
140 bar
0.05
sample #9
pristine
95 bar
0.09
140 bar
0.02
a If available, the gravimetric value is given in parentheses. The
experimental error of all measurements is approximately (0.1 wt %.
TABLE 5: Hydrogen Storage Capacities Determined by
Desorption Measurements
References and Notes
sample
#1
activation
pressure
storage capacitya
(1) New Sci. 1996, 2061, 20.
(2) Chambers, A.; Park, C.; Baker, T. K.; Rodriguez, N. M. J. Phys.
Chem. B 1998, 102, 4253.
(3) Park, C.; Anderson, P. E.; Chambers, A.; Tan, C. D.; Hidalgo, R.;
Rodriguez, N. M. J. Phys. Chem. B 1999, 103, 10572.
(4) Boehm, H. P. Carbon 1973, 11, 583.
(5) Baker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates, F. S.; Waite,
R. J. J. Catal. 1972, 26, 51.
(6) Yang, R. T.; Chen, J. P. J. Catal. 1989, 115, 52.
(7) Baker, R. T. K. Carbon 1989, 27, 315.
(8) Rodriguez, N. M. J. Mater. Res. 1993, 8, 3233.
(9) Krishnankutty, N.; Park, C.; Rodriguez, N. M.; Baker, R. T. K.
Catal. Today 1997, 37, 295.
150 °C.
vacuum 1000 °C.Ar/H2
150 °C.
vacuum 900 °C.
vacuum 1000 °C. Ar/H2
150 °C.
130 bar
120 bar
120 bar
100 bar
120 bar
100 bar
100 bar
130 bar
-0.2 wt %
0.8 wt %
-1.0 wt %
0.2 wt %
-1.0 wt %
0.5 wt %
-0.3 wt %
0.5 wt %
-0.3 wt %
0.7 wt %
0.4 wt %
0.1 wt %
0.1 wt %
-0.1 wt %
-1.0 wt %
-0.2 wt %
-0.8 wt %
#2
#3
#4
#6
#7
#8
vacuum 925 °C. Ar
150 °C. vacuum
150 °C. vacuum
130 bar
(10) Rodriguez, N. M.; Chambers, A.; Baker, R. T. K. Langmuir 1995,
11, 3862.
150 °C.
vacuum 700°C Ar/O2
150 °C.
vacuum, 150 °C.
vacuum 925 °C. Ar
1000 °C. Ar/H2
130 bar
130 bar
100 bar
120 bar
100 bar
120 bar
(11) Cheng, H.-M.; Yang, Q.-H.; Liu, C. Carbon 2001, 39, 1447.
(12) Baker, R. T. K.; Rodriguez, N. M. Graphite nanofiber catalyst
systems for use in fuel cell electrodes. U.S. Patent 6,485,858, 2002.
(13) Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Carbon
2000, 38 183.
#9
a Note: The standard deviation of this procedure as derived from
dry runs was about 0.8 wt %.
(14) Rodriguez, N. M.; Kim, M.-S.; Baker, R. T. K. J. Phys. Chem.
1994, 98, 13108.
(15) Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91.
(16) Yang, R. T. Carbon 2000, 38 623.
(17) Fan, Y.; Liao, B.; Liu, M.; Yei, Y.; Lu, M.; Cheng, H. Carbon
1999, 37, 1649.
(18) Cheng, F.; et al. Z. Metallkd. 2000 91, 306.
(19) Gupta, B. K.; Srivastava, O. N. Int. J. Hydrogen Energy 2000, 25,
825.
In addition, no increase of the hydrogen uptake due to
activation procedures could be detected. On the contrary, the
two pristine samples #1 and #2, which show a slight storage
capacity, lose this property by the activation. This is in
accordance with the TEM analysis of the fibers, which shows
a strong structural change due to the high-temperature treat-
ment.
In particular, we were not able to confirm the hydrogen
storage values of 1.5 and 4.2 wt % provided by Baker and
Rodriguez for their sample #5 in the pristine state and after
activation, respectively.
(20) Gupta, B. K.; Srivastava, O. N. Int. J. Hydrogen Energy 2001, 26,
857.
(21) Browning, D. J.; Gerrard, M. L.; Lakeman, J. B.; Mellor, I. M.;
Mortimer, R. J.; Turpin, M. C. Nano Lett. 2002, 3, 201.
(22) Stro¨bel, R.; Jo¨rissen, L.; Schliermann, T.; Trapp, V.; Schu¨tz, W.;
Bohmhammel, K.; Wolf, G.; Garche, J. J. Power Sources 1999, 84, 221.
(23) Ahn, C. C.; Ye, Y.; Ratnakumar, B. V.; Witham, C.; Bowman, R.
C.; Fultz, B. Appl. Phys. Lett. 1998, 73, 3378.