2-
NOx Species Adsorbed on ZrO2 and ZrO2-SO4
J. Phys. Chem. B, Vol. 106, No. 15, 2002 3949
TABLE 2: Assignments of the FTIR Bands Observed
during Adsorption of 1.07 KPa of NO and Its Coadsorption
with O2 (NO:O2 ) 1:2) at Room Temperature on Sulfated
Zirconia
and the Scientific and Technical Research Council of Turkey
(TU¨ BITAK), Project TBAG-1706.
References and Notes
NOx species
N2O (ads)
band positions (cm-1
)
modes
(1) Indovina, V.; Occhiuzzi, M.; Ciambelli, P.; Sannino, D.; Ghiotti,
G.; Prinetto, F. Studies in Surface Science and Catalysis; Hightower, J.
W., Delgass, N. W., Iglesia, E., Bell, A. T., Eds.; Elsevier Science
Publishers: Amsterdam, 1996; Vol. 101, p 691.
(2) Pietrogiacomi, D.; Sannino, D.; Tuti, S.; Ciambelli, P.; Indovina,
V.; Occhiuzzi, M.; Pepe, F. Appl. Catal. B 1999, 21, 141.
(3) Hamada, H.; Kintaichi, Y.; Tabata, M.; Sasaki, M.; Ito, T. Chem.
Lett. 1991, 2179.
(4) Pasel, J.; Speer, V.; Albrecht, C.; Richter, F.; Papp, H. Appl. Catal.
B 2000, 25, 105.
(5) Delahay, G.; Ensuque, E.; Coq, B.; Figue´ras, F. J. Catal. 1998,
175, 7.
(6) Figue´ras, F.; Coq, B.; Ensuque, E.; Tachon, D.; Delahay, G. Catal.
Today 1998, 42, 117.
(7) Chin, Ya-H.; Alvarez, W. E.; Resasco, D. E. Catal. Today 2000,
62, 159.
(8) Mennier, F. C.; Ukropec, R.; Stapleton, C.; Ross, J. R. H. Appl.
Catal. B 2001, 30, 163.
(9) Hadjiivanov, K. I. Catal. ReV.-Sci. Eng. 2000, 42, 71.
(10) Miyata, H.; Konishi, S.; Ohno, T.; Hatayama, F. J. Chem. Soc.,
Faraday Trans. 1995, 91, 1557.
2290, 2240
1230
1912
1950-1960
1930
1530
1680
3550-3000
1610
1620
1200
2260
1964, 1892
1580
1250
2615
1750
ν(NN)
ν(NO)
ν(NO)
ν(NO)
Zr4+-NO
ON-Zr4+-(SO4
N2O3
2-
)
ν(NdO)
νas(NO2)
cis-HNO2 (ads)
H2O (ads)
ν(NdO)
ν(OH)
δ(HOH)
NO3- (bridged)
ν(NdO)
νas(NO2)
νas(NO2) + νs(NO2)
νs(NO2) + δ(ONO)
ν(NdO)
NO3- (bidentate)
νas(NO2)
ν(NdO) + νs(NO2)
νs(NO2) + δ(ONO)
bridged (1620 and 1200 cm-1) and bidentate (1580 and 1250
cm-1) nitrates.
(11) Delahay, G.; Coq, B.; Ensuque, E.; Figue´ras, F. Langmuir 1997,
13, 5588.
(12) Hadjiivanov, K. Catal. Lett. 2000, 68, 157.
(13) Pozdnyakov, D.; Flimonov, V. Kinet. Katal. 1973, 14, 760.
(14) Ghiotti, G.; Chiorino, A. Spectrochim. Acta 1993, 49A, 1345.
(15) Ghiotti, G.; Prinetto, F. Res. Chem. Intermed. 1999, 25, 131.
(16) Toraya, H.; Yashmura, M.; Simiyama, S. J. Am. Ceram. Soc. 1984,
67, C119.
(17) Guglielminotti, E. Langmuir 1990, 6, 1455.
(18) Morterra, C.; Aschieri, R.; Volante, M. Mater. Chem. Phys. 1988,
20, 539.
(19) Cerrato, G.; Bordiga, S.; Barbera, S.; Morterra, C. Appl. Surf. Sci.
1997, 115, 53.
(20) Jung, K. T.; Bell, A. T. J. Mol. Catal. A 2000, 163, 27.
(21) Morterra, C.; Cerrato, G.; Pinna, F.; Signoretto, M. J. Phys. Chem.
1994, 98, 12373.
Table 2 illustrates the absorption bands observed during NO
adsorption and its coadsorption with O2 on sulfated zirconia.
Conclusions
The adsorption of NO at room temperature on pure and
sulfated zirconia occurs through disproportionation, leading to
the formation of nitrous acid; water molecules; nitro species;
and anionic nitrosyls, NO-. The latter species are stable on the
surface of zirconia, whereas, on the sulfated sample, they are
2-
readily oxidized by the SO4 groups. The process of NO
disproportionation is favored by wet surfaces and occurs with
the participation of the hydroxyl groups of zirconia. These are
tribridged OH groups for pure zirconia and terminal OH groups
for sulfated sample. The anionic nitrosyls are stable in an oxygen
atmosphere at room temperature but are oxidized at 573 K. If
they are in contact with a NO/O2 mixture at room temperature
they transform into nitrato species.
(22) Bolis, V.; Morterra, C.; Volante, M.; Orio, L.; Fubini, B. Langmuir
1990, 6, 695.
(23) Morterra, C.; Bolis, V.; Cerrato, G.; Magnacca, G. Surf. Sci. 1994,
307-309, 1206.
(24) Laane, J.; Ohlsen, J. R. Prog. Inorg. Chem. 1986, 28, 465.
(25) Nakamoto, K. Infrared and Raman Spectra of Inorganic and
Coordination Compounds. Part B: Applications in Coordination, Orga-
nometallic, and Bioinorganic Chemistry, 5th ed.; John Wiley & Sons: New
York, 1997.
(26) Latajka, Z.; Mielke, Z.; Olbert-Majkut, A.; Wieczorek, R.; Tokhadze,
K. G. Phys. Chem. Chem. Phys. 1999, 1, 2441.
(27) Huang, S.-J.; Walters, A. B.; Vannice M. A. J. Catal. 2000, 192,
29.
(28) Hadjiivanov, K.; Knozinger, H. Phys. Chem. Chem. Phys. 2000,
2, 2803.
(29) Cerruti, L.; Modone, E.; Guglielminotti, E.; Borello, E. J. Chem.
Soc., Faraday Trans. 1 1974, 70, 729.
(30) Low, M. J. D.; Yang, R. T. J. Catal. 1974, 34, 479.
(31) Martinez-Arias, A.; Soria, J.; Conesa, J. S.; Seoane, X. L.; Arcoya,
A.; Cataluna, R. J. Chem. Soc., Faraday Trans. 1995, 91, 1679.
(32) Klingenberg, B.; Vannice, M. A. Appl. Catal. B 1999, 21, 19.
(33) Hadjiivanov, K.; Bushev, V.; Kantcheva, M.; Klissurski, D.
Langmuir 1994, 10, 464.
The coadsorption of NO and O2 on pure zirconia leads to
the formation of monodentate, bidentate, and bridged nitrate
-
species. On sulfated zirconia, no monodentate NO3 species
are formed, and the total surface concentration of the NO3- ions
is lower. In addition, the nitrate species obtained on the sulfated
zirconia are thermally less stable than those on pure zirconia.
Analysis of the combination bands of the nitrate species shows
that this spectral region can be used for the structural identifica-
tion of bidentate and bridged nitrates. Bridged nitrates produce
combination bands at 2845-2800 cm-1 and a pair of bands at
1980-1960 and 1900-1890 cm-1. Bidentate nitrates can be
distinguished by the appearance of combination bands in the
region of 2600 cm-1 and a pair of bands at 1755 and 1700 cm-1
.
(34) Kantcheva, M. M.; Bushev, V. P.; Hadjiivanov, K. I. J. Chem. Soc.,
Faraday Trans. 1992, 88, 3087.
(35) Givan, A.; Loewenschuss, A. J. Chem. Phys. 1989, 90, 6135.
(36) Lever, A. B. P.; Mantovani, E.; Ramaswamy, B. S. Can. J. Chem.
1971, 49, 1957.
Acknowledgment. This work was financially supported by
the Bilkent University, Research Development Grant for 2001,