7042 Yang et al.
Asian J. Chem.
1.67
100
(a)
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
11.05
11.22
12.38
14.12 14.24
10.87
10.77
10.47
5.60
5.85
5.97
9.91
9.55
8.73
8.48
6.12
8.04
6.42
6.63
6.86
1198
2096
1662
1.54
1.39
10
5
3442
2.77
3.60
4
4.38
5
0
0
1
2
3
6
7
8
9
10
11
12
13 14
15 16
Time (min)
4000
3500
3000
2500
2000
1500
1000
62.98
Wavelength (cm–1)
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
Fig. 4. FTIR spectra of dimethyl sulfoxide (top), β-cyclodextrin dimethyl
sulfoxide solution (middle) and β-cyclodextrin dimethyl sulfoxide
solution in the presence of H2S bottom
(b)
62.13
ACKNOWLEDGEMENTS
This work was supported by foundation of the program
for new century excellent talents in university (NCET-12-
1017), the Program for Grassland Excellent Talents of Inner
Mongolia Autonomous Region, the Inner Mengolia Science
& Technology Plan, the program for young talents of science
and technology in universities of inner mongolia autonomous
region (NJYT-12-B13) and the natural science foundation of
Inner Mongolia Autonomous Region (2011BS0601, China).
61.17
59.13
60
47.11
45.07
35.10
63.96
73.97
19.08
27.16
77.02 93.99 104.01 123.92 137.10 146.59 163.80 181.39
80 100 120 140 160 180
m/z
0
20
40
Fig. 3. (a) GC-MS selected ion plots of liquid supernatant; (b) GC-MS/
MS spectra of liquid supernatant
REFERENCES
To clarify the reaction of dimethyl sulfoxide with H2S,
FTIR spectra were obtained to determine possible compounds
by analysis of their vibrational bands. FTIR spectra of the
original dimethyl sulfoxide, β-cyclodextrin-dimethyl sulfoxide
solution and β-cyclodextrin dimethyl sulfoxide solution in the
presence of H2S (Fig. 4) were obtained and several charac-
teristic absorption bands at 1662 and 3442 cm-1 were observed.
The absorption bands at 1662 and 3442 cm-1 were due to the
stretching vibration of -OH and the bending vibration of water,
respectively18.
1. W.W. Epstein and F.W. Sweat, Chem. Rev., 67, 247 (1967).
2. I. Barnes, J. Hjorth and N. Mihalopoulos, Chem. Rev., 106, 940 (2006).
3. S. Searles Jr. and J.H. Hays, J. Org. Chem., 23, 2028 (1958).
4. N. Kornblum, J.W. Powers, G.J. Anderson, W.J. Jones, H.O. Larson,
O. Levand and W.M. Weaver, J. Am. Chem. Soc., 79, 6562 (1957).
5. O.G. Lowe, J. Org. Chem., 42, 2524 (1977).
6. D. Martin, A. Weise and H.J. Niclas, Angew. Chem. Int. Ed. Engl., 6,
318 (1967).
7. T.J. Wallace, J. Am. Chem. Soc., 86, 2018 (1964).
8. T.J. Wallace and J.J. Mahon, J. Am. Chem. Soc., 86, 4099 (1964).
9. X. Esteve, A. Conesa and A. Coronas, J. Chem. Eng. Data, 48, 392
(2003).
10. H.C. Ku and C.H. Tu, J. Chem. Eng. Data, 45, 391 (2000).
11. A. Valtz, C. Coquelet and D. Richon, Fluid Phase Equilib., 220, 75
(2004).
According to the above analysis, we propose a simplistic
reaction scheme eqn. 1 that may explain the course of reaction
according to previous report (1). The exact molecular mecha-
nism of the reaction of dimethyl sulfoxide with H2S and the
role of β-cyclodextrin thus requires further investigation.
12. D. Nagel, R. De Kermadec, H.G. Lintz, C. Roizard and F. Lapicque,
Chem. Eng. Sci., 57, 4883 (2002).
13. R. De Kermadec, F. Lapicque, D. Roizard and C. Roizard, Ind. Eng.
Chem. Res., 41, 153 (2002).
-
14. X.X. Li, Y.X. Liu and X.H. Wei, Chin. J. Chem. Eng., 13, 234 (2005).
15. J. Zhang, P. Zhang, G. Chen, F. Han and X. Wei, J. Chem. Eng. Data,
53, 1479 (2008).
H3C
S
+
H SH
SH
H3C S OH
CH3
+
O
CH3
OH
16. J. Zhang, P. Zhang, F. Han, G. Chen, L. Zhang and X. Wei, Ind. Eng.
Chem. Res., 48, 1287 (2009).
H3C
S
S
H
(1)
CH3
+ H2O
17. J.B. Zhang, F. Han, X.H. Wei, L. Shui, H. Gong and P. Zhang, Ind.
Eng. Chem. Res., 49, 2025 (2010).
+
DMS
S
Conclusion
18. A. Lasagabaster, M.J. Abad, L. Barral and A. Ares, Eur. Polym. J., 42,
3121 (2006).
This paper provides a novel reaction of dimethyl sulfoxide
with H2S in the presence of β-cyclodextrin, while it converts
H2S to solid sulfur under a condition of room temperature and
normal atmospheric pressure.